"И нужны какие-то графики с временем решения и точ...
Criado em: 29 de novembro de 2025
Respondido usando GPT-5.1 Thinking por Chat01
Criado em: 29 de novembro de 2025
Respondido usando GPT-5.1 Thinking por Chat01
"И нужны какие-то графики с временем решения и точности от числа итераций" - требования научника касаемо реализации моего алгоритма глобального поиска, в моём управляемом приложении есть возможность выбора алгоритма для решения задачи нахождения оптимального положения захвата робота-манипулятора, мой алгоритм записан в основном .cpp файле моей dll библиотеки, код алгоритма: "#include "pch.h"
#define XOR_RAND(state, result_var)
do {
unsigned s = (state);
s ^= s << 13;
s ^= s >> 17;
s ^= s << 5;
(state) = s;
float tmp = (float)((double)(s) * (1.0/4294967296.0));
result_var = tmp;
} while (0)
#define XOR_RAND_GRSH(state, result_var)
do {
unsigned s = (state);
s ^= s << 13;
s ^= s >> 17;
s ^= s << 5;
(state) = s;
result_var = fmaf((float)(int)s, 0x1.0p-31f, -1.0f);
} while (0)
#define FABE13_COS(x, result_var)
do {
const float ax = fabsf(x);
float r = fmodf(ax, 6.28318530718f);
if (r > 3.14159265359f)
r = 6.28318530718f - r;
if (r < 1.57079632679f) {
const float t2 = r * r;
const float t4 = t2 * t2;
result_var = fmaf(t4, fmaf(t2, -0.0013888889f, 0.0416666667f), fmaf(t2, -0.5f, 1.0f));
} else {
r = 3.14159265359f - r;
const float t2 = r * r;
const float t4 = t2 * t2;
result_var = -fmaf(t4, fmaf(t2, -0.0013888889f, 0.0416666667f), fmaf(t2, -0.5f, 1.0f));
}
} while (0)
#define FABE13_SIN(x, result_var)
do {
const float x = (x);
const float ax = fabsf(x);
float r = fmodf(ax, 6.28318530718f);
bool sfl = r > 3.14159265359f;
if (sfl)
r = 6.28318530718f - r;
bool cfl = r > 1.57079632679f;
if (cfl)
r = 3.14159265359f - r;
const float t2 = r * r;
float _s = fmaf(t2, fmaf(t2, fmaf(t2, -0.0001984127f, 0.0083333333f), -0.16666666f), 1.0f) * r;
result_var = ((x < 0.0f) ^ sfl) ? -_s : _s;
} while (0)
#define FABE13_SINCOS(in, sin_out, cos_out, n)
do {
int i = 0;
const int limit = (n) & ~7;
if ((n) >= 8) {
static __declspec(align(16)) const __m256 VEC_TWOPI = _mm256_set1_ps(6.28318530718f);
static __declspec(align(16)) const __m256 VEC_PI = _mm256_set1_ps(3.14159265359f);
static __declspec(align(16)) const __m256 VEC_PI_2 = _mm256_set1_ps(1.57079632679f);
static __declspec(align(16)) const __m256 INV_TWOPI = _mm256_set1_ps(0.15915494309189535f);
static __declspec(align(16)) const __m256 BIAS = _mm256_set1_ps(12582912.0f);
static __declspec(align(16)) const __m256 VEC_COS_P5 = _mm256_set1_ps(-0.0013888889f);
static __declspec(align(16)) const __m256 VEC_COS_P3 = _mm256_set1_ps(0.0416666667f);
static __declspec(align(16)) const __m256 VEC_COS_P1 = _mm256_set1_ps(-0.5f);
static __declspec(align(16)) const __m256 VEC_COS_P0 = _mm256_set1_ps(1.0f);
static __declspec(align(16)) const __m256 VEC_SIN_P5 = _mm256_set1_ps(-0.0001984127f);
static __declspec(align(16)) const __m256 VEC_SIN_P3 = _mm256_set1_ps(0.0083333333f);
static __declspec(align(16)) const __m256 VEC_SIN_P1 = _mm256_set1_ps(-0.16666666f);
static __declspec(align(16)) const __m256 VEC_SIN_P0 = _mm256_set1_ps(1.0f);
static __declspec(align(16)) const __m256 VEC_ZERO = _mm256_setzero_ps();
while (i < limit) {
const __m256 vx = _mm256_load_ps(&(in)[i]);
const __m256 vax = _mm256_andnot_ps(_mm256_set1_ps(-0.0f), vx);
__m256 q = _mm256_fmadd_ps(vax, INV_TWOPI, BIAS);
q = _mm256_sub_ps(q, BIAS);
const __m256 r = _mm256_fnmadd_ps(VEC_TWOPI, q, vax);
const __m256 r1 = _mm256_min_ps(r, _mm256_sub_ps(VEC_TWOPI, r));
const __m256 r2 = _mm256_min_ps(r1, _mm256_sub_ps(VEC_PI, r1));
const __m256 t2 = _mm256_mul_ps(r2, r2);
const __m256 cosv = _mm256_fmadd_ps(t2, _mm256_fmadd_ps(t2, _mm256_fmadd_ps(t2, VEC_COS_P5, VEC_COS_P3), VEC_COS_P1), VEC_COS_P0);
const __m256 sinv = _mm256_mul_ps(_mm256_fmadd_ps(t2, _mm256_fmadd_ps(t2, _mm256_fmadd_ps(t2, VEC_SIN_P5, VEC_SIN_P3), VEC_SIN_P1), VEC_SIN_P0), r2);
const __m256 cflip = _mm256_cmp_ps(r1, VEC_PI_2, _CMP_GT_OQ);
const __m256 sflip = _mm256_xor_ps(_mm256_cmp_ps(vx, VEC_ZERO, _CMP_LT_OQ), _mm256_cmp_ps(r, VEC_PI, _CMP_GT_OQ));
_mm256_store_ps(&(cos_out)[i], _mm256_blendv_ps(cosv, _mm256_sub_ps(VEC_ZERO, cosv), cflip));
_mm256_store_ps(&(sin_out)[i], _mm256_blendv_ps(sinv, _mm256_sub_ps(VEC_ZERO, sinv), sflip));
i += 8;
}
}
while (i < (n)) {
const float x = (in)[i];
const float ax = fabsf(x);
float q = fmaf(ax, 0.15915494309189535f, 12582912.0f);
q -= 12582912.0f;
float r = fmaf(-6.28318530718f, q, ax);
const bool sflip = r > 3.14159265359f;
if (sflip)
r = 6.28318530718f - r;
const bool cflip = r > 1.57079632679f;
if (cflip)
r = 3.14159265359f - r;
const float t2 = r * r;
const float c = fmaf(t2, fmaf(t2, fmaf(t2, -0.0013888889f, 0.0416666667f), -0.5f), 1.0f);
const float s = fmaf(t2, fmaf(t2, fmaf(t2, -0.0001984127f, 0.0083333333f), -0.16666666f), 1.0f) * r;
(cos_out)[i] = cflip ? -c : c;
(sin_out)[i] = ((x < 0.0f) ^ sflip) ? -s : s;
++i;
}
} while (0)
enum List : unsigned {
Top = 0b00u,
Down = 0b01u,
Left = 0b10u,
Right = 0b11u
};
__declspec(align(16)) struct Step final {
const unsigned next, dx, dy;
Step(const unsigned n, const unsigned x, const unsigned y) noexcept : next(n), dx(x), dy(y) {}
};
__declspec(align(16)) struct InvStep final {
const unsigned q, next;
InvStep(const unsigned q_val, const unsigned n) noexcept : q(q_val), next(n) {}
};
__declspec(align(16)) static const Step g_step_tbl[4][4] = {
{ Step(Right,0u,0u), Step(Top,0u,1u), Step(Top,1u,1u), Step(Left,1u,0u) },
{ Step(Left,1u,1u), Step(Down,1u,0u), Step(Down,0u,0u), Step(Right,0u,1u) },
{ Step(Down,1u,1u), Step(Left,0u,1u), Step(Left,0u,0u), Step(Top,1u,0u) },
{ Step(Top,0u,0u), Step(Right,1u,0u), Step(Right,1u,1u), Step(Down,0u,1u) }
};
__declspec(align(16)) static const InvStep g_inv_tbl[4][4] = {
{ InvStep(0u,Right), InvStep(1u,Top), InvStep(3u,Left), InvStep(2u,Top) },
{ InvStep(2u,Down), InvStep(3u,Right), InvStep(1u,Down), InvStep(0u,Left) },
{ InvStep(2u,Left), InvStep(1u,Left), InvStep(3u,Top), InvStep(0u,Down) },
{ InvStep(0u,Top), InvStep(3u,Down), InvStep(1u,Right), InvStep(2u,Right) }
};
static const boost::mpi::environment* g_env;
static const boost::mpi::communicator* g_world;
__declspec(align(16)) struct CrossMsg final {
float s_x1, s_x2, e_x1, e_x2, Rtop;
template<typename Archive> __declspec(noalias) __forceinline void serialize(Archive& ar, const unsigned int) noexcept {
ar& s_x1& s_x2& e_x1& e_x2& Rtop;
}
};
__declspec(align(16)) struct MultiCrossMsg final {
float intervals[15];
unsigned count;
template<typename Archive> __declspec(noalias) __forceinline void serialize(Archive& ar, const unsigned int) noexcept {
ar& intervals& count;
}
};
__declspec(align(16)) struct BestSolutionMsg final {
float bestF, bestX, bestY, bestQ[32];
unsigned dim;
template<typename Archive> __declspec(noalias) __forceinline void serialize(Archive& ar, const unsigned int) noexcept {
ar& bestF& bestX& bestY& bestQ& dim;
}
};
__declspec(align(16)) struct Slab final {
char* const base;
char* current;
char* const end;
__forceinline Slab(void* const memory, const size_t usable) noexcept :
base((char*)memory), current(base), end(base + (usable & ~(size_t)63u)) {
}
};
static thread_local tbb::enumerable_thread_specific<Slab*> tls( noexcept {
void* memory = _aligned_malloc(16777216u, 16u);
Slab* slab = (Slab*)_aligned_malloc(sizeof(Slab), 16u);
new (slab) Slab(memory, 16777216u);
char* p = slab->base;
#pragma loop ivdep
while (p < slab->end) {
*p = 0;
p += 4096u;
}
return slab;
});
__declspec(align(16)) struct Peano2DMap final {
const int levels;
const float a, b, c, d;
const float lenx, leny;
const float inv_lenx;
const unsigned scale;
const unsigned start;
text__forceinline Peano2DMap(const int L, const float _a, const float _b, const float _c, const float _d, const unsigned st) noexcept : levels(L), a(_a), b(_b), c(_c), d(_d), lenx(_b - _a), leny(_d - _c), inv_lenx(1.0f / (_b - _a)), scale((unsigned)1u << (L << 1)), start(st) { }
};
static Peano2DMap gActiveMap(0, 0, 0, 0, 0, 0);
__declspec(align(16)) struct Interval1D final {
const float x1, x2, y1, y2, delta_y, ordinate_factor, N_factor, quadratic_term, M;
float R;
textstatic __declspec(noalias) __forceinline void* operator new(const size_t) noexcept { Slab* s = tls.local(); char* r = s->current; s->current += 64u; return r; } __declspec(noalias) __forceinline Interval1D(const float _x1, const float _x2, const float _y1, const float _y2, const float _N) noexcept : x1(_x1), x2(_x2), y1(_y1), y2(_y2), delta_y(_y2 - _y1), ordinate_factor(-(y1 + y2) * 2.0f), N_factor(_N == 1.0f ? _x2 - _x1 : sqrtf(_x2 - _x1)), quadratic_term(fmaf((1.0f / N_factor)* delta_y, delta_y, 0.0f)), M(fabsf(delta_y) / N_factor) { } __declspec(noalias) __forceinline void ChangeCharacteristic(const float _m) noexcept { const float inv_m = 1.0f / _m; R = fmaf(inv_m, quadratic_term, fmaf(_m, N_factor, ordinate_factor)); }
};
__declspec(align(16)) struct IntervalND final {
const float x1, x2, y1, y2, delta_y, ordinate_factor;
float N_factor, quadratic_term, M, R;
unsigned long long i1, i2;
float diam;
int span_level;
textstatic __declspec(noalias) __forceinline void* operator new(const size_t) noexcept { Slab* s = tls.local(); char* r = s->current; s->current += 64u; return r; } __declspec(noalias) __forceinline IntervalND(const float _x1, const float _x2, const float _y1, const float _y2) noexcept : x1(_x1), x2(_x2), y1(_y1), y2(_y2), delta_y(_y2 - _y1), ordinate_factor(-(y1 + y2) * 2.0f), N_factor(0), quadratic_term(0), M(0), R(0), i1(0), i2(0), diam(0), span_level(0) { } __declspec(noalias) __forceinline void compute_span_level(const struct MortonND& map) noexcept; __declspec(noalias) __forceinline void set_metric(const float d_alpha) noexcept { N_factor = d_alpha; quadratic_term = (1.0f / N_factor) * delta_y * delta_y; M = fabsf(delta_y) / N_factor; } __declspec(noalias) __forceinline void ChangeCharacteristic(const float _m) noexcept { const float inv_m = 1.0f / _m; R = fmaf(inv_m, quadratic_term, fmaf(_m, N_factor, ordinate_factor)); }
};
static __declspec(noalias) __forceinline bool ComparePtr1D(const Interval1D* const a, const Interval1D* const b) noexcept {
return a->R < b->R;
}
static __declspec(noalias) __forceinline bool ComparePtrND(const IntervalND* const a, const IntervalND* const b) noexcept {
return a->R < b->R;
}
static __declspec(noalias) __forceinline void RecomputeR_ConstM_AVX2_1D(Interval1D* const* const arr, const size_t n, const float m) noexcept {
const __m256 vm = _mm256_set1_ps(m);
__m256 vinvm = _mm256_rcp_ps(vm);
vinvm = _mm256_mul_ps(vinvm, _mm256_fnmadd_ps(vm, vinvm, _mm256_set1_ps(2.0f)));
size_t i = 0, limit = n & ~7ull;
alignas(16) float q[8], nf[8], od[8], out[8];
#pragma loop ivdep
while (i < limit) {
int k = 0;
#pragma loop ivdep
while (k < 8) {
const Interval1D* const p = arr[i + k];
q[k] = p->quadratic_term;
nf[k] = p->N_factor;
od[k] = p->ordinate_factor;
++k;
}
const __m256 vq = _mm256_load_ps(q), vnf = _mm256_load_ps(nf), vod = _mm256_load_ps(od);
const __m256 t = _mm256_fmadd_ps(vm, vnf, vod);
const __m256 res = _mm256_fmadd_ps(vq, vinvm, t);
_mm256_store_ps(out, res);
k = 0;
#pragma loop ivdep
while (k < 8) {
arr[i + k]->R = out[k];
++k;
}
i += 8;
}
while (i < n) {
arr[i]->ChangeCharacteristic(m);
++i;
}
}
static __declspec(noalias) __forceinline void RecomputeR_AffineM_AVX2_1D(Interval1D* const* const arr, const size_t n, const float GF, const float alpha) noexcept {
const __m256 vGF = _mm256_set1_ps(GF), va = _mm256_set1_ps(alpha);
size_t i = 0, limit = n & ~7ull;
alignas(16) float ln[8], Mv[8], q[8], nf[8], od[8], out[8];
#pragma loop ivdep
while (i < limit) {
int k = 0;
#pragma loop ivdep
while (k < 8) {
const Interval1D* const p = arr[i + k];
ln[k] = p->x2 - p->x1;
Mv[k] = p->M;
q[k] = p->quadratic_term;
nf[k] = p->N_factor;
od[k] = p->ordinate_factor;
++k;
}
const __m256 vln = _mm256_load_ps(ln), vM = _mm256_load_ps(Mv), vq = _mm256_load_ps(q), vnf = _mm256_load_ps(nf), vod = _mm256_load_ps(od);
const __m256 vm = _mm256_fmadd_ps(vGF, vln, _mm256_mul_ps(va, vM));
__m256 vinvm = _mm256_rcp_ps(vm);
vinvm = _mm256_mul_ps(vinvm, _mm256_fnmadd_ps(vm, vinvm, _mm256_set1_ps(2.0f)));
const __m256 t = _mm256_fmadd_ps(vm, vnf, vod);
const __m256 res = _mm256_fmadd_ps(vq, vinvm, t);
_mm256_store_ps(out, res);
k = 0;
#pragma loop ivdep
while (k < 8) {
arr[i + k]->R = out[k];
++k;
}
i += 8;
}
while (i < n) {
const Interval1D* const p = arr[i];
const float mi = fmaf(GF, (p->x2 - p->x1), p->M * alpha);
arr[i]->R = fmaf((1.0f / mi) * p->quadratic_term, 1.0f, fmaf(mi, p->N_factor, p->ordinate_factor));
++i;
}
}
static __declspec(noalias) __forceinline void RecomputeR_ConstM_AVX2_ND(IntervalND* const* const arr, const size_t n, const float m) noexcept {
const __m256 vm = _mm256_set1_ps(m);
__m256 vinvm = _mm256_rcp_ps(vm);
vinvm = _mm256_mul_ps(vinvm, _mm256_fnmadd_ps(vm, vinvm, _mm256_set1_ps(2.0f)));
size_t i = 0, limit = n & ~7ull;
alignas(16) float q[8], nf[8], od[8], out[8];
#pragma loop ivdep
while (i < limit) {
int k = 0;
#pragma loop ivdep
while (k < 8) {
const IntervalND* const p = arr[i + k];
q[k] = p->quadratic_term;
nf[k] = p->N_factor;
od[k] = p->ordinate_factor;
++k;
}
const __m256 vq = _mm256_load_ps(q), vnf = _mm256_load_ps(nf), vod = _mm256_load_ps(od);
const __m256 t = _mm256_fmadd_ps(vm, vnf, vod);
const __m256 res = _mm256_fmadd_ps(vq, vinvm, t);
_mm256_store_ps(out, res);
k = 0;
#pragma loop ivdep
while (k < 8) {
arr[i + k]->R = out[k];
++k;
}
i += 8;
}
while (i < n) {
arr[i]->ChangeCharacteristic(m);
++i;
}
}
static __declspec(noalias) __forceinline void RecomputeR_AffineM_AVX2_ND(IntervalND* const* const arr, const size_t n, const float GF, const float alpha) noexcept {
const __m256 vGF = _mm256_set1_ps(GF), va = _mm256_set1_ps(alpha);
size_t i = 0, limit = n & ~7ull;
alignas(16) float ln[8], Mv[8], q[8], nf[8], od[8], out[8];
#pragma loop ivdep
while (i < limit) {
int k = 0;
#pragma loop ivdep
while (k < 8) {
const IntervalND* const p = arr[i + k];
ln[k] = p->x2 - p->x1;
Mv[k] = p->M;
q[k] = p->quadratic_term;
nf[k] = p->N_factor;
od[k] = p->ordinate_factor;
++k;
}
const __m256 vln = _mm256_load_ps(ln), vM = _mm256_load_ps(Mv), vq = _mm256_load_ps(q), vnf = _mm256_load_ps(nf), vod = _mm256_load_ps(od);
const __m256 vm = _mm256_fmadd_ps(vGF, vln, _mm256_mul_ps(va, vM));
__m256 vinvm = _mm256_rcp_ps(vm);
vinvm = _mm256_mul_ps(vinvm, _mm256_fnmadd_ps(vm, vinvm, _mm256_set1_ps(2.0f)));
const __m256 t = _mm256_fmadd_ps(vm, vnf, vod);
const __m256 res = _mm256_fmadd_ps(vq, vinvm, t);
_mm256_store_ps(out, res);
k = 0;
#pragma loop ivdep
while (k < 8) {
arr[i + k]->R = out[k];
++k;
}
i += 8;
}
while (i < n) {
const IntervalND* const p = arr[i];
const float mi = fmaf(GF, (p->x2 - p->x1), p->M * alpha);
arr[i]->R = fmaf((1.0f / mi) * p->quadratic_term, 1.0f, fmaf(mi, p->N_factor, p->ordinate_factor));
++i;
}
}
static __declspec(noalias) __forceinline float fast_pow_int(const float v, const int n) noexcept {
float r;
switch (n) {
case 3: {
const float v2 = v * v;
r = v2 * v;
} break;
case 4: {
const float v2 = v * v;
r = v2 * v2;
} break;
case 5: {
const float v2 = v * v;
r = v2 * v2 * v;
} break;
case 6: {
const float v2 = v * v;
const float v4 = v2 * v2;
r = v4 * v2;
} break;
case 7: {
const float v2 = v * v;
const float v4 = v2 * v2;
r = v4 * v2 * v;
} break;
case 8: {
const float v2 = v * v;
const float v4 = v2 * v2;
r = v4 * v4;
} break;
case 9: {
const float v3 = v * v * v;
const float v6 = v3 * v3;
r = v6 * v3;
} break;
case 10: {
const float v2 = v * v;
const float v4 = v2 * v2;
const float v8 = v4 * v4;
r = v8 * v2;
} break;
case 11: {
const float v2 = v * v;
const float v4 = v2 * v2;
const float v8 = v4 * v4;
r = v8 * v2 * v;
} break;
case 12: {
const float v3 = v * v * v;
const float v6 = v3 * v3;
r = v6 * v6;
} break;
case 13: {
const float v3 = v * v * v;
const float v6 = v3 * v3;
r = v6 * v6 * v;
} break;
case 14: {
const float v7 = v * v * v * v * v * v * v;
r = v7 * v7;
} break;
case 15: {
const float v7 = v * v * v * v * v * v * v;
r = v7 * v7 * v;
} break;
default: {
const float v2 = v * v;
const float v4 = v2 * v2;
const float v8 = v4 * v4;
r = v8 * v8;
}
}
return r;
}
static __declspec(noalias) __forceinline float step(const float _m, const float x1, const float x2, const float y1, const float y2, const float _N, const float _r) noexcept {
const float diff = y2 - y1;
const unsigned sign_mask = ((reinterpret_cast<const unsigned>(&diff)) & 0x80000000u) ^ 0x80000000u;
const float sign_mult = reinterpret_cast<const float>(&sign_mask);
if (_N == 1.0f)
return fmaf(-(1.0f / _m), diff, x1 + x2) * 0.5f;
if (_N == 2.0f)
return fmaf((1.0f / (_m * _m)) * sign_mult * diff * diff * _r, 1.0f, x1 + x2) * 0.5f;
return fmaf((1.0f / fast_pow_int(_m, _N)) * sign_mult * fast_pow_int(fabsf(diff), _N) * _r, 1.0f, x1 + x2) * 0.5f;
}
__declspec(align(16)) struct MortonCachePerRank final {
std::vector<int> permCache;
std::vector<unsigned long long> invMaskCache;
unsigned baseSeed;
};
static thread_local MortonCachePerRank g_mc;
static __declspec(noalias) __forceinline unsigned long long gray_encode(const unsigned long long x) noexcept {
return x ^ (x >> 1);
}
static __declspec(noalias) __forceinline long long gray_decode(unsigned long long g) noexcept {
g ^= g >> 32;
g ^= g >> 16;
g ^= g >> 8;
g ^= g >> 4;
g ^= g >> 2;
g ^= g >> 1;
return g;
}
__declspec(align(16)) struct MortonND final {
const int dim, levels;
const int eff_levels;
const int extra_levels;
const int chunks;
std::vector<int> chunk_bits;
std::vector<unsigned long long> chunk_bases;
unsigned long long scale;
std::vector<float> low, high, step, invStep, baseOff;
std::vector<int> perm;
std::vector<unsigned long long> invMask;
std::vector<unsigned long long> pextMask;
std::vector<unsigned long long> pextMaskChunks;
const float invScaleLevel;
const bool use_gray;
textstatic __declspec(noalias) __forceinline unsigned long long make_mask(const int dim, const int Lc, const int d) noexcept { unsigned long long m = 0ull, bitpos = static_cast<unsigned long long>(d); int b = 0;
#pragma loop ivdep
while (b < Lc) {
m |= 1ull << bitpos;
bitpos += static_cast<unsigned long long>(dim);
++b;
}
return m;
}
text__declspec(noalias) __forceinline MortonND(const int D, const int L, const float* const lows, const float* const highs, const MortonCachePerRank& mc) : dim(D), levels(L), eff_levels((std::max)(1, static_cast<int>(63 / (D ? D : 1)))), extra_levels((L > eff_levels) ? (L - eff_levels) : 0), chunks((extra_levels > 0) ? (1 + (extra_levels + eff_levels - 1) / eff_levels) : 1), low(lows, lows + D), high(highs, highs + D), step(D, 0.0f), invStep(D, 0.0f), baseOff(D, 0.0f), perm(mc.permCache.begin(), mc.permCache.begin() + D), invMask(mc.invMaskCache.begin(), mc.invMaskCache.begin() + D), invScaleLevel(1.0f / static_cast<float>(static_cast<unsigned long long>(1) << L)), use_gray(true) { int d = 0;
#pragma loop ivdep
while (d < dim) {
const float rng = high[d] - low[d];
const float st = rng * invScaleLevel;
step[d] = st;
invStep[d] = 1.0f / st;
baseOff[d] = fmaf(0.5f, st, low[d]);
++d;
}
textchunk_bits.resize(chunks); pextMaskChunks.resize(static_cast<size_t>(chunks) * static_cast<size_t>(dim)); chunk_bases.resize(chunks); int remaining = levels; int c = 0; while (c < chunks) { const int Lc = (c == 0) ? (std::min)(eff_levels, remaining) : (std::min)(eff_levels, remaining); chunk_bits[c] = Lc; remaining -= Lc; const unsigned long long baseC = static_cast<unsigned long long>(1) << (dim * Lc); chunk_bases[c] = baseC; d = 0;
#pragma loop ivdep
while (d < dim) {
pextMaskChunks[static_cast<size_t>(c) * static_cast<size_t>(dim) + static_cast<size_t>(d)] = make_mask(dim, Lc, d);
++d;
}
++c;
}
textpextMask.resize(dim); d = 0;
#pragma loop ivdep
while (d < dim) {
pextMask[d] = make_mask(dim, chunk_bits[0], d);
++d;
}
textscale = static_cast<unsigned long long>(1) << (dim * chunk_bits[0]); } __declspec(noalias) __forceinline float block_diameter(unsigned long long i1, unsigned long long i2) const noexcept { if (i1 > i2) std::swap(i1, i2); float s2 = 0.0f; int d = 0;
#pragma loop ivdep
while (d < dim) {
const int pd = perm[d];
const unsigned long long varying = (i1 ^ i2) & pextMask[d];
const int nfree_hi = _mm_popcnt_u64(varying);
const int nfree_total = nfree_hi + (levels - chunk_bits[0]);
const float range = step[pd] * (ldexpf(1.0f, nfree_total) - 1.0f);
s2 = fmaf(range, range, s2);
++d;
}
return sqrtf(s2);
}
text__declspec(noalias) __forceinline void map01ToPoint(const float t, float* const __restrict out) const noexcept { unsigned long long accBits[32] = { 0ull }; int accShifted[32] = { 0 }; int c = 0; while (c < chunks) { const int Lc = chunk_bits[c]; const unsigned long long baseC = chunk_bases[c]; const float scaled = t * static_cast<float>(baseC); unsigned long long idxc = (scaled >= static_cast<float>(baseC)) ? (baseC - 1ull) : static_cast<unsigned long long>(scaled); const float u = scaled - static_cast<float>(idxc); if (use_gray) idxc = gray_encode(idxc); int shift_from_top = 0; int k = 0; while (k <= c) { shift_from_top += chunk_bits[k]; ++k; } const int inv_shift = levels - shift_from_top; int d = 0;
#pragma loop ivdep
while (d < dim) {
const int pd = perm[d];
const unsigned long long mask = pextMaskChunks[static_cast<size_t>(c) * static_cast<size_t>(dim) + static_cast<size_t>(d)];
unsigned long long bits = _pext_u64(idxc, mask);
if (inv_shift >= 0) {
unsigned long long invMaskSegment = 0ull;
if (chunk_bits[c] < 63) {
const unsigned long long take = (static_cast<unsigned long long>(1) << chunk_bits[c]) - 1ull;
invMaskSegment = (invMask[pd] >> inv_shift) & take;
}
bits ^= invMaskSegment;
}
accBits[pd] = (accBits[pd] << Lc) | bits;
accShifted[pd] += Lc;
++d;
}
++c;
}
int d = 0;
#pragma loop ivdep
while (d < dim) {
out[d] = fmaf(step[d], static_cast<float>(accBits[d]), baseOff[d]);
++d;
}
}
text__declspec(noalias) __forceinline float pointToT(const float* const __restrict q) const noexcept { const int bitsFull = levels; const int bitsCoarse = chunk_bits[0]; unsigned long long idx0 = 0ull; int d = 0;
#pragma loop ivdep
while (d < dim) {
const int pd = perm[d];
const float v = (q[pd] - baseOff[pd]) * invStep[pd];
const long long cell = static_cast<long long>(_mm_cvt_ss2si(_mm_round_ss(_mm_setzero_ps(), _mm_set_ss(v), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)));
const long long maxv = (static_cast<long long>(1) << bitsFull) - 1;
unsigned long long b = static_cast<unsigned long long>(cell) >> (bitsFull - bitsCoarse);
unsigned long long invMask0 = 0ull;
if (bitsCoarse < 63) {
const unsigned long long take = (static_cast<unsigned long long>(1) << bitsCoarse) - 1ull;
invMask0 = (invMask[pd] >> (bitsFull - bitsCoarse)) & take;
}
b ^= invMask0;
idx0 |= _pdep_u64(b, pextMask[d]);
++d;
}
if (use_gray) idx0 = gray_decode(idx0);
return (static_cast<float>(idx0) + 0.5f) / static_cast<float>(scale);
}
};
__declspec(noalias) __forceinline void IntervalND::compute_span_level(const MortonND& map) noexcept {
span_level = 0;
int d = 0;
#pragma loop ivdep
while (d < map.dim) {
const unsigned long long varying = (i1 ^ i2) & map.pextMask[d];
span_level += _mm_popcnt_u64(varying);
++d;
}
span_level += (map.levels - map.chunk_bits[0]) * map.dim;
span_level = (std::min)(span_level, 11);
}
__declspec(align(16)) struct ManipCost final {
const int n;
const bool variableLen;
const float targetX, targetY;
const float minTheta;
const float archBiasW, archBiasK;
const float sharpW;
text__declspec(noalias) __forceinline ManipCost(const int _n, const bool _variableLen, const float _targetX, const float _targetY, const float _minTheta) noexcept : n(_n), variableLen(_variableLen), targetX(_targetX), targetY(_targetY), minTheta(_minTheta), archBiasW(0.02f), archBiasK(3.0f), sharpW(0.05f) { } __declspec(noalias) __forceinline float operator()(const float* const __restrict q, float& out_x, float& out_y) const noexcept { const float* const th = q; const float* const L = variableLen ? (q + n) : nullptr; __declspec(align(16)) float phi[32], s_arr[32], c_arr[32]; float x = 0.0f, y = 0.0f, phi_acc = 0.0f, penC = 0.0f, archPen = 0.0f; int i = 0;
#pragma loop ivdep
while (i < n) {
phi_acc += th[i];
phi[i] = phi_acc;
++i;
}
FABE13_SINCOS(phi, s_arr, c_arr, n);
textconst float Lc = 1.0f; if (variableLen) { i = 0; while (i < n) { const float Li = L[i]; x = fmaf(Li, c_arr[i], x); y = fmaf(Li, s_arr[i], y); ++i; } } else { i = 0; while (i < n) { x = fmaf(Lc, c_arr[i], x); y = fmaf(Lc, s_arr[i], y); ++i; } } i = 0;
#pragma loop ivdep
while (i < n) {
const float ai = fabsf(th[i]);
const float v = ai - minTheta;
if (v > 0.0f) {
const float scale = 2.0f / (minTheta + 1.0e-6f);
penC += sharpW * (exp2f(scale * v) - 1.0f);
}
const float t = -th[i] * archBiasK;
float sp;
if (t > 10.0f) {
sp = t;
}
else {
const float e_t = fmaf(t, fmaf(t, fmaf(t, fmaf(t, 0.00833333377f, 0.0416666679f), 0.16666667f), 0.5f), 1.0f);
sp = log1pf(e_t);
}
archPen += archBiasW * sp;
++i;
}
textconst float dx = x - targetX, dy = y - targetY; const float dist = sqrtf(fmaf(dx, dx, dy * dy)); out_x = x; out_y = y; return dist + penC + archPen; }
};
static __declspec(noalias) __forceinline void HitTest2D_analytic(const float x_param, float& out_x1, float& out_x2) noexcept {
const float a = gActiveMap.a, inv_lenx = gActiveMap.inv_lenx;
const unsigned scale = gActiveMap.scale, scale_minus_1 = scale - 1u;
const float lenx = gActiveMap.lenx, leny = gActiveMap.leny, c = gActiveMap.c;
const unsigned start = gActiveMap.start;
const int levels = gActiveMap.levels;
textfloat norm = (x_param - a) * inv_lenx; norm = fminf(fmaxf(norm, 0.0f), 0x1.fffffep-1f); unsigned idx = static_cast<unsigned>(norm * static_cast<float>(scale)); idx = idx > scale_minus_1 ? scale_minus_1 : idx; float sx = lenx, sy = leny; float x1 = a, x2 = c; unsigned type = start; int l = levels - 1; while (l >= 0) { const unsigned q = (idx >> (l * 2)) & 3u; const Step s = g_step_tbl[type][q]; type = s.next; sx *= 0.5f; sy *= 0.5f; x1 += s.dx ? sx : 0.0f; x2 += s.dy ? sy : 0.0f; --l; } out_x1 = x1 + sx * 0.5f; out_x2 = x2 + sy * 0.5f;
}
static __declspec(noalias) __forceinline float FindX2D_analytic(const float px, const float py) noexcept {
const float a = gActiveMap.a, b = gActiveMap.b, c = gActiveMap.c, d = gActiveMap.d;
const float lenx = gActiveMap.lenx, leny = gActiveMap.leny;
const unsigned scale = gActiveMap.scale;
const unsigned start = gActiveMap.start;
const int levels = gActiveMap.levels;
const float clamped_px = fminf(fmaxf(px, a), b), clamped_py = fminf(fmaxf(py, c), d);
float sx = lenx, sy = leny;
float x0 = a, y0 = c;
unsigned idx = 0u;
unsigned type = start;
int l = 0;
while (l < levels) {
sx *= 0.5f;
sy *= 0.5f;
const float mx = x0 + sx, my = y0 + sy;
const unsigned tr = static_cast<unsigned>((clamped_px > mx) & (clamped_py > my));
const unsigned tl = static_cast<unsigned>((clamped_px < mx) & (clamped_py > my));
const unsigned dl = static_cast<unsigned>((clamped_px < mx) & (clamped_py < my));
const unsigned none = static_cast<unsigned>(1u ^ (tr | tl | dl));
const unsigned dd = (tr << 1) | tr | tl | (none << 1);
const InvStep inv = g_inv_tbl[type][dd];
type = inv.next;
idx = (idx << 2) | inv.q;
const unsigned dx = dd >> 1, dy = dd & 1u;
x0 += dx ? sx : 0.0f;
y0 += dy ? sy : 0.0f;
++l;
}
const float scale_recip = 1.0f / static_cast<float>(scale);
return fmaf(static_cast<float>(idx) * scale_recip, lenx, a);
}
static __declspec(noalias) __forceinline int generate_lhs_seeds_lite(const MortonND& map, const int dim, float* const __restrict S, const int stride, unsigned seed) noexcept {
int temp_dim = dim;
const int ns = --temp_dim * temp_dim;
unsigned st = seed;
alignas(16) int permutations[32][256];
int d = 0;
#pragma loop ivdep
while (d < dim) {
int s = 0;
#pragma loop ivdep
while (s < ns) {
permutations[d][s] = s;
++s;
}
s = ns - 1;
while (s > 0) {
st ^= st << 13;
st ^= st >> 17;
st ^= st << 5;
const int j = static_cast<int>(st % static_cast<unsigned>(s + 1));
const int t = permutations[d][s];
permutations[d][s] = permutations[d][j];
permutations[d][j] = t;
--s;
}
++d;
}
int s2 = 0;
#pragma loop ivdep
while (s2 < ns) {
d = 0;
#pragma loop ivdep
while (d < dim) {
st ^= st << 13;
st ^= st >> 17;
st ^= st << 5;
const float u = (st & 0xFFFFFF) * 5.9604645e-8f;
const int stratum = permutations[d][s2];
const float pos = (static_cast<float>(stratum) + u) / static_cast<float>(ns);
const int pd = map.perm[d];
const float lo = map.low[pd], hi = map.high[pd];
S[s2 * stride + d] = fmaf(pos, (hi - lo), lo);
++d;
}
++s2;
}
return ns;
}
static __declspec(noalias) __forceinline int generate_heuristic_seeds(const ManipCost& cost, const MortonND& map, const int dim, float* const __restrict S, const int stride, const unsigned seed) noexcept {
const int n = cost.n;
const bool VL = cost.variableLen;
const float tx = cost.targetX, ty = cost.targetY;
int total_seeds = 0;
text{ float* const s0 = S + total_seeds * stride; float sin_phi, cos_phi; const float rho = sqrtf(fmaf(tx, tx, ty * ty)); FABE13_SINCOS(&tx, &sin_phi, &cos_phi, 1); const float phi = (fabsf(sin_phi) > 0.0f) ? atan2f(ty, tx) : 0.0f; const float len = fminf(fmaxf(fmaf(1.0f / static_cast<float>(n), rho, 0.0f), 0.5f), 2.0f); int i = 0;
#pragma loop ivdep
while (i < n) {
s0[i] = (1.0f / static_cast<float>(n)) * phi;
++i;
}
if (VL) {
i = 0;
while (i < n) {
s0[n + i] = len;
++i;
}
}
++total_seeds;
}
text{ float* const s1 = S + total_seeds * stride; float sin_phi, cos_phi; FABE13_SINCOS(&tx, &sin_phi, &cos_phi, 1); const float phi = (fabsf(sin_phi) > 0.0f) ? atan2f(ty, tx) : 0.0f; int i = 0;
#pragma loop ivdep
while (i < n) {
s1[i] = fmaf(0.5f, phi, 0.0f) * ((i & 1) ? -1.0f : 1.0f);
++i;
}
if (VL) {
i = 0;
while (i < n) {
s1[n + i] = fmaf(0.4f, static_cast<float>(i) / static_cast<float>(n), 0.8f);
++i;
}
}
++total_seeds;
}
text{ float* const s2 = S + total_seeds * stride; const float inv = (n > 1) ? 1.0f / static_cast<float>(n - 1) : 0.0f; float sin_phi, cos_phi; FABE13_SINCOS(&tx, &sin_phi, &cos_phi, 1); const float phi = (fabsf(sin_phi) > 0.0f) ? atan2f(ty, tx) : 0.0f; int i = 0;
#pragma loop ivdep
while (i < n) {
const float pr = static_cast<float>(i) * inv;
s2[i] = fmaf(phi, fmaf(-0.3f, pr, 1.0f), 0.0f);
++i;
}
if (VL) {
int j = 0;
while (j < n) {
float si;
FABE13_SIN(fmaf(1.5f, static_cast<float>(j), 0.0f), si);
s2[n + j] = fmaf(0.2f, si, 1.0f);
++j;
}
}
++total_seeds;
}
textconst int lhs_count = generate_lhs_seeds_lite(map, dim, S + total_seeds * stride, stride, seed); total_seeds += lhs_count; return total_seeds;
}
static __declspec(noalias) void agp_run_branch_mpi(
const MortonND& map, const ManipCost& cost, const int maxIter, const float r, const bool adaptive, const float eps, const unsigned seed,
std::vector<IntervalND*, boost::alignment::aligned_allocator<IntervalND*, 16u>>& H,
std::vector<float, boost::alignment::aligned_allocator<float, 16u>>& bestQ,
float& bestF, float& bestX, float& bestY, size_t& out_iterations, float& out_achieved_epsilon, const float M_prior = 1e-3f)
noexcept {
const int n = cost.n;
const int dim = n + (cost.variableLen ? n : 0);
const float dim_f = static_cast<float>(dim);
unsigned exchange_counter_500 = 0;
unsigned exchange_counter_T = 0;
textalignas(16) float M_by_span[12]; int msi = 0; while (msi < 12) { M_by_span[msi++] = M_prior; } float Mmax = M_prior; alignas(16) float q_local[32], phi[32], s_arr[32], c_arr[32], sum_s[32], sum_c[32], q_try[32]; bestQ.reserve(static_cast<size_t>(dim)); float x = 0.0f, y = 0.0f; int no_improve = 0; auto t_to_idx = [&](const float t) -> unsigned long long { unsigned long long idx = static_cast<unsigned long long>(fmaf(t, static_cast<float>(map.scale), 0.0f)); return idx; }; auto update_pockets_and_Mmax = [&](IntervalND* const I) { const int k = I->span_level; if (I->M > M_by_span[k]) M_by_span[k] = I->M; if (M_by_span[k] > Mmax) Mmax = M_by_span[k]; }; const float a = 0.0f, b = 1.0f; auto evalAt = [&](const float t) -> float { map.map01ToPoint(t, q_local); float f = cost(q_local, x, y); if (f < bestF * 1.25f) { float acc = 0.0f; int ii = 0; while (ii < n) { acc = fmaf(q_local[ii], 1.0f, acc); phi[ii] = acc; ++ii; } FABE13_SINCOS(phi, s_arr, c_arr, n); float as = 0.0f, ac = 0.0f; int k = n - 1; while (k >= 0) { const float Lk = cost.variableLen ? q_local[n + k] : 1.0f; as = fmaf(Lk, s_arr[k], as); ac = fmaf(Lk, c_arr[k], ac); sum_s[k] = as; sum_c[k] = ac; --k; } const float dx = fmaf(x, 1.0f, -cost.targetX); const float dy = fmaf(y, 1.0f, -cost.targetY); const float dist = sqrtf(fmaf(dx, dx, dy * dy)) + 1.0e-8f; float eta = 0.125f; int stepI = 0; while (stepI < 3) { int i = 0;
#pragma loop ivdep
while (i < n) {
float gpen = 0.0f;
{
const float ai = fabsf(q_local[i]);
const float v = ai - cost.minTheta;
if (v > 0.0f) {
const float scale = fmaf(cost.minTheta, 1.0f, 1.0e-6f);
const float e = exp2f(fmaf(2.0f / scale, v, 0.0f));
const float dpen_dtheta = cost.sharpW * fmaf(e, fmaf(0.69314718055994530941723212145818f, 2.0f / scale, 0.0f), 0.0f) * (copysignf(1.0f, q_local[i]));
gpen = fmaf(dpen_dtheta, 1.0f, gpen);
}
}
{
const float tsg = fmaf(-q_local[i], cost.archBiasK, 0.0f);
const float sig = 1.0f / fmaf(expf(-tsg), 1.0f, 1.0f);
gpen = fmaf(-(cost.archBiasW * cost.archBiasK), sig, gpen);
}
textconst float g = fmaf(fmaf(dx, -sum_s[i], fmaf(dy, sum_c[i], 0.0f)), 1.0f / dist, gpen); q_try[i] = fmaf(-eta, g, q_local[i]); const float lo0 = -1.0471975511965977461542144610932f; const float hi0 = 2.6179938779914943653855361527329f; const float lo = -2.6179938779914943653855361527329f; const float hi = 2.6179938779914943653855361527329f; const float Lb = (i == 0) ? lo0 : lo; const float Hb = (i == 0) ? hi0 : hi; if (q_try[i] < Lb) q_try[i] = Lb; else if (q_try[i] > Hb) q_try[i] = Hb; ++i; } if (cost.variableLen) { int j = 0;
#pragma loop ivdep
while (j < n) {
const float g = fmaf(fmaf(dx, c_arr[j], fmaf(dy, s_arr[j], 0.0f)), 1.0f / dist, 0.0f);
float v = fmaf(-eta, g, q_local[n + j]);
if (v < 0.5f) v = 0.5f;
else if (v > 2.0f) v = 2.0f;
q_try[n + j] = v;
++j;
}
}
float x2, y2;
const float f2 = cost(q_try, x2, y2);
if (f2 < f) {
memcpy(q_local, q_try, static_cast<size_t>(dim) * sizeof(float));
f = f2;
x = x2;
y = y2;
break;
}
eta = fmaf(eta, 0.5f, 0.0f);
++stepI;
}
textconst int last = n - 1; const float lo = (last == 0) ? -1.0471975511965977461542144610932f : -2.6179938779914943653855361527329f; const float hi = 2.6179938779914943653855361527329f; float bestLocF = f; float saved = q_local[last]; float delta = 0.05f; while (delta >= 0.00625f) { int sgn = -1; while (sgn <= 1) { float cand = fmaf(static_cast<float>(sgn), delta, saved); if (cand < lo) cand = lo; else if (cand > hi) cand = hi; const float backup = q_local[last]; q_local[last] = cand; float x2, y2; const float f2 = cost(q_local, x2, y2); if (f2 < bestLocF) { bestLocF = f2; x = x2; y = y2; saved = cand; } q_local[last] = backup; sgn += 2; } delta = fmaf(delta, 0.5f, 0.0f); } if (bestLocF < f) { q_local[last] = saved; f = bestLocF; } } if (f < bestF) { bestF = f; bestQ.assign(q_local, q_local + dim); bestX = x; bestY = y; no_improve = 0; } else { ++no_improve; } return f; }; const float f_a = evalAt(a), f_b = evalAt(b); const float Kf = fminf(fmaxf(fmaf(2.0f, dim_f, 0.0f), 8.0f), 128.0f); const int K = static_cast<int>(Kf); H.reserve(static_cast<size_t>(maxIter) + static_cast<size_t>(K) + 16u); const int rank = g_world->rank(); const int world = g_world->size(); alignas(16) float seeds[256 * 32]; const int seedCnt = generate_heuristic_seeds(cost, map, dim, seeds, 32, fmaf(static_cast<float>(rank), 7919.0f, static_cast<float>(seed))); int i = 0; while (i < seedCnt) { const float* const s = seeds + static_cast<size_t>(fmaf(static_cast<float>(i), 32.0f, 0.0f)); const float t_seed = map.pointToT(s); const float interval_size = (i < 3) ? fmaf(0.0004f, static_cast<float>(dim), 0.0f) : fmaf(fmaf(0.00031f, static_cast<float>(dim), 0.0f), exp2f(fmaf((1.0f / static_cast<float>(seedCnt - 4)) * log2f(fmaf(0.00025f, 1.0f / 0.00031f, 0.0f)), static_cast<float>(i - 3), 0.0f)), 0.0f); const float t1 = fmaxf(a, fmaf(-interval_size, 1.0f, t_seed)); const float t2 = fminf(b, fmaf(interval_size, 1.0f, t_seed)); if (t2 > t1) { alignas(16) float q1[32], q2[32]; float x1, y1, x2, y2; map.map01ToPoint(t1, q1); const float f1 = cost(q1, x1, y1); map.map01ToPoint(t2, q2); const float f2 = cost(q2, x2, y2); IntervalND* const I = new IntervalND(t1, t2, f1, f2); I->i1 = t_to_idx(t1); I->i2 = t_to_idx(t2); I->diam = map.block_diameter(I->i1, I->i2); I->compute_span_level(map); I->set_metric(I->diam); update_pockets_and_Mmax(I); I->ChangeCharacteristic(fmaf(r, Mmax, 0.0f)); if (i < 3) { I->R = fmaf(I->R, fmaf(0.01f, static_cast<float>(dim), 0.85f), 0.0f); } else { const float start_mult = fmaf(0.214f, static_cast<float>(dim), 0.0f); const float end_mult = fmaf(0.174f, static_cast<float>(dim), 0.0f); const float mult = fmaf(start_mult, exp2f(fmaf((1.0f / static_cast<float>(seedCnt - 4)) * log2f(fmaf(end_mult, 1.0f / start_mult, 0.0f)), static_cast<float>(i - 3), 0.0f)), 0.0f); I->R = fmaf(I->R, mult, 0.0f); } H.emplace_back(I); std::push_heap(H.begin(), H.end(), ComparePtrND); if (f1 < bestF) { bestF = f1; bestQ.assign(q1, q1 + dim); bestX = x1; bestY = y1; } if (f2 < bestF) { bestF = f2; bestQ.assign(q2, q2 + dim); bestX = x2; bestY = y2; } } ++i; } float prev_t = a, prev_f = f_a; int k = 1; while (k <= K) { const float t = fmaf(fmaf((b - a), static_cast<float>(k) / static_cast<float>(K + 1), a), 1.0f, static_cast<float>(rank) / static_cast<float>(world * (K + 1))); const float f = evalAt(t); IntervalND* const I = new IntervalND(prev_t, t, prev_f, f); I->i1 = t_to_idx(prev_t); I->i2 = t_to_idx(t); I->diam = map.block_diameter(I->i1, I->i2); I->compute_span_level(map); I->set_metric(I->diam); update_pockets_and_Mmax(I); I->ChangeCharacteristic(fmaf(r, Mmax, 0.0f)); H.emplace_back(I); std::push_heap(H.begin(), H.end(), ComparePtrND); prev_t = t; prev_f = f; ++k; } IntervalND* const tail = new IntervalND(prev_t, b, prev_f, f_b); tail->i1 = t_to_idx(prev_t); tail->i2 = t_to_idx(b); tail->diam = map.block_diameter(tail->i1, tail->i2); tail->compute_span_level(map); tail->set_metric(tail->diam); update_pockets_and_Mmax(tail); tail->ChangeCharacteristic(fmaf(r, Mmax, 0.0f)); H.emplace_back(tail); std::push_heap(H.begin(), H.end(), ComparePtrND); float dmax = fmaf(b, 1.0f, -a); const float initial_len = dmax; const float thr03 = fmaf(0.3f, initial_len, 0.0f); const float inv_thr03 = 1.0f / thr03; int it = 0; float kickEveryDimf = fmaf(120.0f, exp2f(fmaf(-0.05f, dim_f, 0.0f)), 0.0f); if (kickEveryDimf < 60.0f) kickEveryDimf = 60.0f; const int kickEveryDim = static_cast<int>(kickEveryDimf); float noImproveThrDimf = fmaf(80.0f, exp2f(fmaf(-0.08f, dim_f, 0.0f)), 0.0f); if (noImproveThrDimf < 30.0f) noImproveThrDimf = 30.0f; const int noImproveThrDim = static_cast<int>(noImproveThrDimf); auto kickEveryByDim = [&](const int d) -> int { float z = fmaf(120.0f, exp2f(fmaf(-0.05f, static_cast<float>(d), 0.0f)), 0.0f); if (z < 60.0f) z = 60.0f; return static_cast<int>(z); }; auto noImproveThrByDim = [&](const int d) -> int { float z = fmaf(80.0f, exp2f(fmaf(-0.08f, static_cast<float>(d), 0.0f)), 0.0f); if (z < 30.0f) z = 30.0f; return static_cast<int>(z); }; while (it < maxIter) { if ((it % kickEveryDim) == 0 && no_improve > noImproveThrDim) { const float t_best = map.pointToT(bestQ.data()); int ii = 0; while (ii < 2) { const float off = (ii == 0) ? 0.01f : -0.01f; const float t_seed = fminf(b, fmaxf(a, fmaf(off, 1.0f, t_best))); const float f_seed = evalAt(t_seed); IntervalND* const J = new IntervalND(fmaf(-0.005f, 1.0f, t_seed), fmaf(0.005f, 1.0f, t_seed), f_seed, f_seed); J->i1 = t_to_idx(fmaf(-0.005f, 1.0f, t_seed)); J->i2 = t_to_idx(fmaf(0.005f, 1.0f, t_seed)); J->diam = map.block_diameter(J->i1, J->i2); J->compute_span_level(map); J->set_metric(J->diam); update_pockets_and_Mmax(J); J->ChangeCharacteristic(fmaf(r, Mmax, 0.0f)); J->R = fmaf(J->R, 0.9f, 0.0f); H.emplace_back(J); std::push_heap(H.begin(), H.end(), ComparePtrND); ++ii; } no_improve = 0; } const float p = fmaf(-1.0f / initial_len, dmax, 1.0f); const bool stagnation = (no_improve > 100) && (it > 270); const float exp_arg = fmaf(-0.06f, dim_f, 0.0f); const float exp2_exp_arg = exp2f(exp_arg); const float A = fmaf(64.0f, exp2_exp_arg, 200.0f); const float B = fmaf(67.0f, exp2_exp_arg, 210.0f); const int T = static_cast<int>(fmaf(-expm1f(p), A, B)); const float p_arg = fmaf(p, 2.3f, -3.0f); const float r_eff = fmaf(-fmaf(p_arg, fmaf(p_arg, fmaf(p_arg, fmaf(p_arg, 0.00833333377f, 0.0416666679f), 0.16666667f), 0.5f), 1.0f), 1.0f, 1.05f); std::pop_heap(H.begin(), H.end(), ComparePtrND); IntervalND* const cur = H.back(); H.pop_back(); const float x1 = cur->x1, x2 = cur->x2, y1 = cur->y1, y2 = cur->y2; float m = fmaf(r_eff, Mmax, 0.0f); float tNew = step(m, x1, x2, y1, y2, dim_f, r); tNew = fminf(fmaxf(tNew, a), b); const float fNew = evalAt(tNew); IntervalND* const L = new IntervalND(x1, tNew, y1, fNew); IntervalND* const Rv = new IntervalND(tNew, x2, fNew, y2); L->i1 = t_to_idx(x1); L->i2 = t_to_idx(tNew); Rv->i1 = t_to_idx(tNew); Rv->i2 = t_to_idx(x2); L->diam = map.block_diameter(L->i1, L->i2); Rv->diam = map.block_diameter(Rv->i1, Rv->i2); L->compute_span_level(map); Rv->compute_span_level(map); L->set_metric(L->diam); Rv->set_metric(Rv->diam); const float Mloc = fmaxf(L->M, Rv->M); update_pockets_and_Mmax(L); update_pockets_and_Mmax(Rv); const float prevMmax = Mmax; if (Mloc > Mmax) Mmax = Mloc; m = fmaf(r_eff, Mmax, 0.0f); if (adaptive) { const float len1 = fmaf(tNew, 1.0f, -x1); const float len2 = fmaf(x2, 1.0f, -tNew); if (fmaf(len1, 1.0f, len2) == dmax) { dmax = fmaxf(len1, len2); for (auto pI : H) { const float Ls = fmaf(pI->x2, 1.0f, -pI->x1); if (Ls > dmax) dmax = Ls; } } if ((thr03 > dmax && !(it % 3)) || (fmaf(10.0f, dmax, 0.0f) < initial_len)) { const float progress = fmaf(-inv_thr03, dmax, 1.0f); const float alpha = fmaf(progress, progress, 0.0f); const float beta = fmaf(-alpha, 1.0f, 2.0f); const float MULT = (1.0f / dmax) * Mmax; const float global_coeff = fmaf(MULT, r_eff, -MULT); const float GF = fmaf(beta, global_coeff, 0.0f); L->ChangeCharacteristic(fmaf(GF, len1, fmaf(L->M, alpha, 0.0f))); Rv->ChangeCharacteristic(fmaf(GF, len2, fmaf(Rv->M, alpha, 0.0f))); const size_t sz = H.size(); RecomputeR_AffineM_AVX2_ND(H.data(), sz, GF, alpha); std::make_heap(H.begin(), H.end(), ComparePtrND); } else { if (Mloc > prevMmax) { L->ChangeCharacteristic(m); Rv->ChangeCharacteristic(m); if (Mloc > fmaf(1.15f, prevMmax, 0.0f)) { const size_t sz = H.size(); RecomputeR_ConstM_AVX2_ND(H.data(), sz, m); std::make_heap(H.begin(), H.end(), ComparePtrND); } } else { L->ChangeCharacteristic(m); Rv->ChangeCharacteristic(m); } } } else { if (Mloc > prevMmax) { L->ChangeCharacteristic(m); Rv->ChangeCharacteristic(m); if (Mloc > fmaf(1.15f, prevMmax, 0.0f)) { const size_t sz = H.size(); RecomputeR_ConstM_AVX2_ND(H.data(), sz, m); std::make_heap(H.begin(), H.end(), ComparePtrND); } } else { L->ChangeCharacteristic(m); Rv->ChangeCharacteristic(m); } } H.emplace_back(L); std::push_heap(H.begin(), H.end(), ComparePtrND); H.emplace_back(Rv); std::push_heap(H.begin(), H.end(), ComparePtrND); _mm_prefetch(reinterpret_cast<const char*>(H[0]), _MM_HINT_T0); _mm_prefetch(reinterpret_cast<const char*>(H[1]), _MM_HINT_T0); IntervalND* const top = H.front(); const float interval_len = top->x2 - top->x1; if ((exp2f((1.0f / dim_f) * log2f(interval_len)) < eps) || (it == maxIter)) { out_iterations = static_cast<size_t>(it); out_achieved_epsilon = interval_len; return; } if (!(it % T)) { MultiCrossMsg out; out.count = 3; float* dest = out.intervals; IntervalND* const t1 = H[0]; IntervalND* const t2 = H[1]; IntervalND* const t3 = H[2]; IntervalND* const tops[3] = { t1, t2, t3 }; unsigned i2 = 0; while (i2 < 3) { IntervalND* const Tt = tops[i2]; dest[0] = Tt->x1; dest[1] = 0.0f; dest[2] = Tt->x2; dest[3] = 0.0f; dest[4] = Tt->R; dest += 5; ++i2; } const size_t iterations = std::bit_width(static_cast<size_t>(world - 1)); bool active = true; const bool invert_T = static_cast<int>(fmaf(static_cast<float>(exchange_counter_T), 1.0f, 1.0f)) & 1; size_t ii = 0; while (ii < iterations && active) { const size_t step = 1ULL << ii; const int partner = rank ^ static_cast<int>(step); if (partner < world) { const bool am_sender = (!!(rank & static_cast<int>(step))) ^ invert_T; if (am_sender) { g_world->isend(partner, 0, out); active = false; } } ++ii; } ++exchange_counter_T; } if (!(it % 500)) { BestSolutionMsg out; out.bestF = bestF; out.bestX = bestX; out.bestY = bestY; out.dim = static_cast<unsigned>(bestQ.size()); memcpy(out.bestQ, bestQ.data(), bestQ.size() * sizeof(float)); const size_t iterations = std::bit_width(static_cast<size_t>(world - 1)); bool active = true; const bool invert_T = static_cast<int>(fmaf(static_cast<float>(exchange_counter_500), 1.0f, 1.0f)) & 1; size_t ii = 0; while (ii < iterations && active) { const size_t step = 1ULL << ii; const int partner = rank ^ static_cast<int>(step); if (partner < world) { const bool am_sender = (!!(rank & static_cast<int>(step))) ^ invert_T; if (am_sender) { g_world->isend(partner, 2, out); active = false; } } ++ii; } ++exchange_counter_500; } while (g_world->iprobe(boost::mpi::any_source, 0)) { MultiCrossMsg in; g_world->recv(boost::mpi::any_source, 0, in); const MultiCrossMsg& mX = in; unsigned ii = 0; while (ii < mX.count) { const float* const d = &mX.intervals[ii * 5]; float sx = d[0], ex = d[2]; if (ex > sx) { alignas(16) float tmp[32]; float tx, ty; map.map01ToPoint(sx, tmp); const float y1i = cost(tmp, tx, ty); map.map01ToPoint(ex, tmp); const float y2i = cost(tmp, tx, ty); IntervalND* const inj = new IntervalND(sx, ex, y1i, y2i); inj->i1 = t_to_idx(sx); inj->i2 = t_to_idx(ex); inj->diam = map.block_diameter(inj->i1, inj->i2); inj->compute_span_level(map); inj->set_metric(inj->diam); update_pockets_and_Mmax(inj); inj->ChangeCharacteristic(fmaf(r, Mmax, 0.0f)); _mm_prefetch(reinterpret_cast<const char*>(H[0]), _MM_HINT_T0); _mm_prefetch(reinterpret_cast<const char*>(H[1]), _MM_HINT_T0); IntervalND* const topH = H.front(); if (inj->R > fmaf(1.15f, topH->R, 0.0f)) { const float p2 = fmaf(-1.0f / initial_len, dmax, 1.0f); const float kf = (no_improve > 100 && it > 270) ? fmaf(0.5819767068693265f, expm1f(p2), 0.3f) : fmaf(0.3491860241215959f, expm1f(p2), 0.6f); inj->R = fmaf(d[4], kf, 0.0f); H.emplace_back(inj); std::push_heap(H.begin(), H.end(), ComparePtrND); } } ++ii; } } while (g_world->iprobe(boost::mpi::any_source, 2)) { BestSolutionMsg bm; g_world->recv(boost::mpi::any_source, 2, bm); if (bm.bestF < fmaf(bestF, 1.15f, 0.0f)) { alignas(16) float tmp_q[32]; memcpy(tmp_q, bm.bestQ, bm.dim * sizeof(float)); const float t_best = map.pointToT(tmp_q); const float t1 = fmaxf(a, fmaf(-0.001f, 1.0f, t_best)); const float t2 = fminf(b, fmaf(0.001f, 1.0f, t_best)); if (t2 > t1) { alignas(16) float tq1[32], tq2[32]; float xx1, yy1, xx2, yy2; map.map01ToPoint(t1, tq1); const float f1 = cost(tq1, xx1, yy1); map.map01ToPoint(t2, tq2); const float f2 = cost(tq2, xx2, yy2); IntervalND* const I = new IntervalND(t1, t2, f1, f2); I->i1 = t_to_idx(t1); I->i2 = t_to_idx(t2); I->diam = map.block_diameter(I->i1, I->i2); I->compute_span_level(map); I->set_metric(I->diam); update_pockets_and_Mmax(I); I->ChangeCharacteristic(fmaf(r, Mmax, 0.0f)); I->R = fmaf(I->R, 0.90f, 0.0f); H.emplace_back(I); std::push_heap(H.begin(), H.end(), ComparePtrND); } if (bm.bestF < bestF) { bestF = bm.bestF; bestX = bm.bestX; bestY = bm.bestY; bestQ.assign(bm.bestQ, bm.bestQ + bm.dim); } } } ++it; }
}
static __declspec(noalias) __forceinline float PivotCalculation(std::vector<IntervalND*>::iterator first, std::vector<IntervalND*>::iterator last) noexcept {
const auto mid = first + ((last - first) >> 1);
float pivot_value = NAN;
if (last - first < 199) {
pivot_value = (*mid)->R;
}
else {
if ((*first)->R < (*mid)->R) {
if ((*mid)->R < (*last)->R) {
pivot_value = (*mid)->R;
}
else {
pivot_value = std::max((*first)->R, (*last)->R);
}
}
else {
if ((*first)->R < (*last)->R) {
pivot_value = (*first)->R;
}
else {
pivot_value = std::max((*mid)->R, (*last)->R);
}
}
}
return pivot_value;
}
static __declspec(noalias) __forceinline void HoaraSort(std::vector<IntervalND*>::iterator first, std::vector<IntervalND*>::iterator last) noexcept {
if (first >= last) {
return;
}
const float pivot_value = PivotCalculation(first, last);
auto left = first;
auto right = last;
do {
while (left < last && (*left)->R < pivot_value) {
left++;
}
while (right > first && (*right)->R > pivot_value) {
right--;
}
if ((*left)->R == (*right)->R && left != right) {
if ((left)->R < ((left + 1))->R) {
left++;
}
else {
right--;
}
}
std::iter_swap(left, right);
} while (left != right);
if (last - first < 199) {
HoaraSort(first, right);
HoaraSort(left + 1, last);
}
else {
oneapi::tbb::parallel_invoke(&first, &right { HoaraSort(first, right); },
&left, &last { HoaraSort(left + 1, last); });
}
}
extern "C" __declspec(dllexport) __declspec(noalias)
void AGP_Manip2D(const int nSegments, const bool variableLengths, const float minTheta, const float targetX, const float targetY,
const int peanoLevels, const int maxIterPerBranch, const float r, const bool adaptiveMode, const float epsilon,
const unsigned int seed, float** const out_bestQ, size_t* const out_bestQLen, float* const out_bestX,
float* const out_bestY, float* const out_bestF, size_t* const out_iterations, float* const out_achieved_epsilon)
noexcept {
Slab* const __restrict slab = tls.local();
slab->current = slab->base;
while (g_world->iprobe(boost::mpi::any_source, 0)) {
MultiCrossMsg dummy;
g_world->recv(boost::mpi::any_source, 0, dummy);
}
while (g_world->iprobe(boost::mpi::any_source, 2)) {
BestSolutionMsg dummy;
g_world->recv(boost::mpi::any_source, 2, dummy);
}
const int dim = nSegments + (variableLengths ? nSegments : 0);
textg_mc.permCache.resize(static_cast<size_t>(dim)); int i = 0; while (i < dim) { g_mc.permCache[i] = i; ++i; } unsigned s = g_mc.baseSeed; i = dim - 1; while (i > 0) { s ^= s << 13; s ^= s >> 17; s ^= s << 5; const unsigned j = s % static_cast<unsigned>(i + 1); std::swap(g_mc.permCache[i], g_mc.permCache[j]); --i; } g_mc.invMaskCache.resize(static_cast<size_t>(dim)); int k = 0; while (k < dim) { s ^= s << 13; s ^= s >> 17; s ^= s << 5; g_mc.invMaskCache[k] = static_cast<unsigned long long>(s); ++k; } std::vector<float, boost::alignment::aligned_allocator<float, 16u>> low; std::vector<float, boost::alignment::aligned_allocator<float, 16u>> high; low.reserve(static_cast<size_t>(dim)); high.reserve(static_cast<size_t>(dim)); i = 0; while (i < nSegments) { low.emplace_back(i == 0 ? -1.0471975511965977461542144610932f : -2.6179938779914943653855361527329f); high.emplace_back(2.6179938779914943653855361527329f); ++i; } if (variableLengths) { i = 0; while (i < nSegments) { low.emplace_back(0.5f); high.emplace_back(2.0f); ++i; } } const ManipCost cost(nSegments, variableLengths, targetX, targetY, minTheta); const int rank = g_world->rank(), world = g_world->size(); std::vector<float, boost::alignment::aligned_allocator<float, 16u>> bestQ; float bestF = FLT_MAX, bx = 0.0f, by = 0.0f; const int levels0 = static_cast<int>(fminf(static_cast<float>(peanoLevels), 8.0f)); const int maxIter0 = static_cast<int>(fmaf(static_cast<float>(maxIterPerBranch), 0.2f, 0.0f)); const MortonND map0(dim, levels0, low.data(), high.data(), g_mc); std::vector<IntervalND*, boost::alignment::aligned_allocator<IntervalND*, 16u>> H_coarse; std::vector<float, boost::alignment::aligned_allocator<float, 16u>> bestQ_coarse; float bestF_coarse = FLT_MAX, bx_coarse = 0.0f, by_coarse = 0.0f; size_t total_oi = 0u; float total_oe = 0.0f; size_t oi = 0u; float oe = 0.0f; const float base_M_prior_factor = fmaf(2.0f, static_cast<float>(nSegments), variableLengths ? 1.41421356f : 0.0f); float M_prior = fmaf(base_M_prior_factor, ldexpf(1.0f, -levels0), 0.0f); agp_run_branch_mpi(map0, cost, maxIter0, r, adaptiveMode, epsilon, seed, H_coarse, bestQ_coarse, bestF_coarse, bx_coarse, by_coarse, oi, oe, M_prior); total_oi += oi; total_oe = oe; if (bestF_coarse < bestF) { bestF = bestF_coarse; bestQ = std::move(bestQ_coarse); bx = bx_coarse; by = by_coarse; } if (levels0 < peanoLevels) { while (g_world->iprobe(boost::mpi::any_source, 0)) { MultiCrossMsg dummy; g_world->recv(boost::mpi::any_source, 0, dummy); } while (g_world->iprobe(boost::mpi::any_source, 2)) { BestSolutionMsg dummy; g_world->recv(boost::mpi::any_source, 2, dummy); } const MortonND map1(dim, peanoLevels, low.data(), high.data(), g_mc); std::vector<IntervalND*, boost::alignment::aligned_allocator<IntervalND*, 16u>> H_fine; std::vector<float, boost::alignment::aligned_allocator<float, 16u>> bestQ_fine = bestQ; float bestF_fine = bestF, bx_fine = bx, by_fine = by; size_t oi_fine = 0u; float oe_fine = 0.0f; float M_prior_fine = fmaf(base_M_prior_factor, ldexpf(1.0f, -peanoLevels), 0.0f); HoaraSort(H_coarse.begin(), H_coarse.end() - 1); const float inv_dim = 1.0f / static_cast<float>(dim + 1); size_t ci = static_cast<size_t>(fmaf(static_cast<float>(H_coarse.size()), fmaf(fmaf(inv_dim, fmaf(inv_dim, fmaf(inv_dim, fmaf(inv_dim, 0.00833333377f, 0.0416666679f), 0.16666667f), 0.5f), 1.0f), 1.0f, -0.7f), 0.0f)); while (ci < H_coarse.size()) { const IntervalND* const C = H_coarse[ci]; alignas(16) float q1[32], q2[32]; float x1, y1, x2, y2; map1.map01ToPoint(C->x1, q1); const float f1 = cost(q1, x1, y1); map1.map01ToPoint(C->x2, q2); const float f2 = cost(q2, x2, y2); IntervalND* const I = new IntervalND(C->x1, C->x2, f1, f2); I->i1 = static_cast<unsigned long long>(fmaf(C->x1, static_cast<float>(map1.scale), 0.0f)); I->i2 = static_cast<unsigned long long>(fmaf(C->x2, static_cast<float>(map1.scale), 0.0f)); I->diam = map1.block_diameter(I->i1, I->i2); I->set_metric(I->diam); H_fine.emplace_back(I); if (f1 < bestF_fine) { bestF_fine = f1; bestQ_fine.assign(q1, q1 + dim); bx_fine = x1; by_fine = y1; } if (f2 < bestF_fine) { bestF_fine = f2; bestQ_fine.assign(q2, q2 + dim); bx_fine = x2; by_fine = y2; } ++ci; } std::make_heap(H_fine.begin(), H_fine.end(), ComparePtrND); agp_run_branch_mpi(map1, cost, fmaf(static_cast<float>(maxIterPerBranch), 1.0f, -static_cast<float>(maxIter0)), r, adaptiveMode, epsilon, seed, H_fine, bestQ_fine, bestF_fine, bx_fine, by_fine, oi_fine, oe_fine, M_prior_fine); total_oi += oi_fine; total_oe = oe_fine; if (bestF_fine < bestF) { bestF = bestF_fine; bestQ = std::move(bestQ_fine); bx = bx_fine; by = by_fine; } } BestSolutionMsg best; best.bestF = bestF; best.bestX = bx; best.bestY = by; best.dim = static_cast<unsigned>(bestQ.size()); memcpy(best.bestQ, bestQ.data(), static_cast<size_t>(best.dim) * sizeof(float)); const size_t iterations = std::bit_width(static_cast<size_t>(world - 1)); bool active = true; size_t itx = 0; while (itx < iterations && active) { const size_t step = 1ULL << itx; const int partner = rank ^ static_cast<int>(step); if (partner < world) { const bool am_sender = (rank & static_cast<int>(step)) != 0; if (am_sender) { g_world->isend(partner, 3, best); active = false; } else { BestSolutionMsg in; g_world->recv(partner, 3, in); if (in.bestF < best.bestF) best = in; } } ++itx; } if (rank == 0) { *out_bestQLen = static_cast<size_t>(best.dim); *out_bestQ = static_cast<float*>(CoTaskMemAlloc(sizeof(float) * (*out_bestQLen))); memcpy(*out_bestQ, best.bestQ, sizeof(float) * (*out_bestQLen)); *out_bestX = best.bestX; *out_bestY = best.bestY; *out_bestF = best.bestF; *out_iterations = total_oi; *out_achieved_epsilon = total_oe; }
}
extern "C" __declspec(dllexport) __declspec(noalias) __forceinline int AgpInit(const int peanoLevel, const float a, const float b, const float c, const float d) noexcept {
g_env = new boost::mpi::environment();
g_world = new boost::mpi::communicator();
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
const int rank = g_world->rank();
const int world_size = g_world->size();
if (world_size == 4) {
new (&gActiveMap) Peano2DMap(peanoLevel, a, b, c, d, rank & 3);
}
g_mc.baseSeed = fmaf(0x9E3779B9u, static_cast<float>(rank), 0x9E3779B9u);
return rank;
}
static __declspec(noalias) __forceinline float ShekelFunc(const float x, const float seed) noexcept {
int i = 0;
float st = seed, r1, r2, res = 0.0f;
#pragma loop ivdep
while (i < 10) {
XOR_RAND(st, r1);
const float xp = fmaf(-r1, 10.0f, x);
XOR_RAND(st, r1);
XOR_RAND(st, r2);
float d = fmaf(fmaf(r1, 20.0f, 5.0f), xp * xp, fmaf(r2, 0.2f, 1.0f));
d = copysignf(fmaxf(fabsf(d), FLT_MIN), d);
res -= (1.0f / d) * 1.0f;
++i;
}
return res;
}
static __declspec(noalias) __forceinline float RastriginFunc(const float x1, const float x2) noexcept {
const float t = fmaf(x1, x1, x2 * x2);
float c1, c2;
FABE13_COS(6.28318530717958647692f * x1, c1);
FABE13_COS(6.28318530717958647692f * x2, c2);
return (t - fmaf(c1 + c2, 10.0f, -14.6f)) * fmaf(-t, 0.25f, 18.42f);
}
static __declspec(noalias) __forceinline float HillFunc(const float x, const float seed) noexcept {
int j = 0;
__declspec(align(16)) float ang[14u];
const float st_ang = 6.28318530717958647692f * x;
while (j < 14) {
ang[j] = st_ang * static_cast<float>(j + 1);
++j;
}
__declspec(align(16)) float sv[14u], cv[14u];
FABE13_SINCOS(ang, sv, cv, 14u);
float state = seed, r1, r2;
XOR_RAND(state, r1);
float res = fmaf(r1, 2.0f, -1.1f);
--j;
#pragma loop ivdep
while (j >= 0) {
XOR_RAND(state, r1);
XOR_RAND(state, r2);
res += fmaf(fmaf(r1, 2.0f, -1.1f), sv[j], fmaf(r2, 2.0f, -1.1f) * cv[j]);
--j;
}
return res;
}
static __declspec(noalias) __forceinline float GrishaginFunc(const float x1, const float x2, const float seed) noexcept {
int j = 0;
__declspec(align(16)) float aj[8u], ak[8u];
#pragma loop ivdep
while (j < 8) {
const float pj = 3.14159265358979323846f * static_cast<float>(j + 1);
aj[j] = pj * x1;
ak[j] = pj * x2;
++j;
}
__declspec(align(16)) float sj[8u], cj[8u], sk[8u], ck[8u];
FABE13_SINCOS(aj, sj, cj, 8u);
FABE13_SINCOS(ak, sk, ck, 8u);
--j;
float p1 = 0.0f, p2 = 0.0f;
float st = seed, r1, r2;
#pragma loop ivdep
while (j >= 0) {
size_t k2 = 0u;
while (k2 < 8u) {
const float s = sj[j] * sj[j];
const float c = ck[k2] * ck[k2];
XOR_RAND_GRSH(st, r1);
XOR_RAND_GRSH(st, r2);
p1 = fmaf(r1, s, fmaf(r2, c, p1));
XOR_RAND_GRSH(st, r1);
XOR_RAND_GRSH(st, r2);
p2 = fmaf(-r1, c, fmaf(r2, s, p2));
++k2;
}
--j;
}
return -sqrtf(fmaf(p1, p1, p2 * p2));
}
extern "C" __declspec(dllexport) __declspec(noalias)
void AGP_1D(const float global_iterations, const float a, const float b, const float r, const bool mode, const float epsilon, const float seed,
float** const out_data, size_t* const out_len) noexcept {
Slab* const __restrict slab = tls.local();
slab->current = slab->base;
int counter = 0;
const float initial_length = b - a;
float dmax = initial_length;
const float threshold_03 = 0.3f * initial_length, inv_threshold_03 = 1.0f / threshold_03;
const float start_val = ShekelFunc(a, seed);
float best_f = ShekelFunc(b, seed);
float x_Rmax_1 = a, x_Rmax_2 = b;
float y_Rmax_1 = start_val, y_Rmax_2 = best_f;
std::vector<float, boost::alignment::aligned_allocator<float, 16u>> Extr;
std::vector<Interval1D*, boost::alignment::aligned_allocator<Interval1D*, 16u>> R;
Extr.reserve(static_cast<size_t>(global_iterations) << 2u);
R.reserve(static_cast<size_t>(global_iterations) << 1u);
R.emplace_back(new Interval1D(a, b, start_val, best_f, 1.0f));
float Mmax = R.front()->M;
float m = r * Mmax;
textwhile (true) { const float new_point = step(m, x_Rmax_1, x_Rmax_2, y_Rmax_1, y_Rmax_2, 1.0f, r); const float new_value = ShekelFunc(new_point, seed); if (new_value < best_f) { best_f = new_value; Extr.emplace_back(best_f); Extr.emplace_back(new_point); } std::pop_heap(R.begin(), R.end(), ComparePtr1D); const Interval1D* const pro = R.back(); const float new_x1 = pro->x1, new_x2 = pro->x2; const float len2 = new_x2 - new_point, len1 = new_point - new_x1; const float interval_len = (len1 < len2 ? len1 : len2); if (++counter == static_cast<int>(global_iterations) || interval_len < epsilon) { Extr.emplace_back(static_cast<float>(counter)); Extr.emplace_back(interval_len); *out_len = Extr.size(); *out_data = static_cast<float*>(CoTaskMemAlloc(sizeof(float) * (*out_len))); memcpy(*out_data, Extr.data(), sizeof(float) * (*out_len)); return; } Interval1D* const curr = new Interval1D(new_x1, new_point, pro->y1, new_value, 1.0f); Interval1D* const curr1 = new Interval1D(new_point, new_x2, new_value, pro->y2, 1.0f); const float currM = curr->M > curr1->M ? curr->M : curr1->M; const size_t r_size = R.size(); if (mode) { if (len2 + len1 == dmax) { dmax = len2 > len1 ? len2 : len1; for (auto p : R) { const float L = p->x2 - p->x1; if (L > dmax) dmax = L; } } if (threshold_03 > dmax && !(counter % 3) || 10.0f * dmax < initial_length) { if (currM > Mmax) { Mmax = currM; m = r * Mmax; } const float progress = fmaf(-inv_threshold_03, dmax, 1.0f); const float alpha = progress * progress; const float betta = 2.0f - alpha; const float MULT = (1.0f / dmax) * Mmax; const float global_coeff = fmaf(MULT, r, -MULT); const float GF = betta * global_coeff; curr->ChangeCharacteristic(fmaf(GF, len1, curr->M * alpha)); curr1->ChangeCharacteristic(fmaf(GF, len2, curr1->M * alpha)); RecomputeR_AffineM_AVX2_1D(R.data(), r_size, GF, alpha); std::make_heap(R.begin(), R.end(), ComparePtr1D); } else { if (currM > Mmax) { if (currM < 1.15f * Mmax) { Mmax = currM; m = r * Mmax; curr->ChangeCharacteristic(m); curr1->ChangeCharacteristic(m); } else { Mmax = currM; m = r * Mmax; curr->ChangeCharacteristic(m); curr1->ChangeCharacteristic(m); RecomputeR_ConstM_AVX2_1D(R.data(), r_size, m); std::make_heap(R.begin(), R.end(), ComparePtr1D); } } else { curr->ChangeCharacteristic(m); curr1->ChangeCharacteristic(m); } } } else { if (currM > Mmax) { if (currM < 1.15f * Mmax) { Mmax = currM; m = r * Mmax; curr->ChangeCharacteristic(m); curr1->ChangeCharacteristic(m); } else { Mmax = currM; m = r * Mmax; curr->ChangeCharacteristic(m); curr1->ChangeCharacteristic(m); RecomputeR_ConstM_AVX2_1D(R.data(), r_size, m); std::make_heap(R.begin(), R.end(), ComparePtr1D); } } else { curr->ChangeCharacteristic(m); curr1->ChangeCharacteristic(m); } } R.back() = curr; std::push_heap(R.begin(), R.end(), ComparePtr1D); R.emplace_back(curr1); std::push_heap(R.begin(), R.end(), ComparePtr1D); const Interval1D* const top = R.front(); x_Rmax_1 = top->x1; x_Rmax_2 = top->x2; y_Rmax_1 = top->y1; y_Rmax_2 = top->y2; }
}
extern "C" __declspec(dllexport) __declspec(noalias)
void AGP_2D(const float N, const float global_iterations, const float a, const float b, const float c,
const float d, const float r, const bool mode, const float epsilon, const float seed,
float** const out_data, size_t* const out_len) noexcept {
Slab* const __restrict slab = tls.local();
slab->current = slab->base;
int counter = 0, no_improve = 0;
const int rank = g_world->rank();
const int world_size = g_world->size();
while (g_world->iprobe(boost::mpi::any_source, 0)) {
MultiCrossMsg dummy;
g_world->recv(boost::mpi::any_source, 0, dummy);
}
const float inv_divider = ldexpf(1.0f, -((gActiveMap.levels << 1) + 1));
const float x_addition = (b - a) * inv_divider, y_addition = (d - c) * inv_divider;
const float true_start = a + x_addition, true_end = b - x_addition;
float x_Rmax_1 = true_start, x_Rmax_2 = true_end;
const float initial_length = x_Rmax_2 - x_Rmax_1;
float dmax = initial_length;
const float threshold_03 = 0.3f * initial_length, inv_threshold_03 = 1.0f / threshold_03;
const float start_val = rank % 3 ? RastriginFunc(true_end, d - y_addition) : RastriginFunc(true_start, c + y_addition);
float best_f = rank % 2 ? RastriginFunc(true_start, d - y_addition) : RastriginFunc(true_end, c + y_addition);
float y_Rmax_1 = start_val, y_Rmax_2 = best_f;
std::vector<float, boost::alignment::aligned_allocator<float, 16u>> Extr;
std::vector<Interval1D* __restrict, boost::alignment::aligned_allocator<Interval1D* __restrict, 16u>> R;
Extr.clear();
Extr.reserve(static_cast<size_t>(global_iterations) << 2u);
R.clear();
R.reserve(static_cast<size_t>(global_iterations) << 1u);
R.emplace_back(new Interval1D(true_start, true_end, start_val, best_f, 2.0f));
const Interval1D* __restrict top_ptr;
float Mmax = R.front()->M, m = r * Mmax;
while (true) {
const float interval_len = x_Rmax_2 - x_Rmax_1;
const bool stagnation = no_improve > 100 && counter > 270;
const float p = fmaf(-1.0f / initial_length, dmax, 1.0f);
while (g_world->iprobe(boost::mpi::any_source, 0)) {
MultiCrossMsg in;
g_world->recv(boost::mpi::any_source, 0, in);
const MultiCrossMsg& mX = in;
unsigned ii = 0;
while (ii < mX.count) {
const float* const d2 = &mX.intervals[ii * 5];
float sx = d2[0], ex = d2[2];
if (ex > sx) {
Interval1D* const __restrict injected = new Interval1D(sx, ex,
RastriginFunc(d2[0], d2[1]), RastriginFunc(d2[2], d2[3]), 2.0f);
injected->ChangeCharacteristic(m);
if (injected->R > 1.15f * top_ptr->R) {
const float k = stagnation ? fmaf(0.5819767068693265f, expm1f(p), 0.3f) : fmaf(0.3491860241215959f, expm1f(p), 0.6f);
injected->R = d2[4] * k;
R.emplace_back(injected);
std::push_heap(R.begin(), R.end(), ComparePtr1D);
}
}
++ii;
}
}
const int T = static_cast<int>(fmaf(-expm1f(p), 264.0f, 277.0f));
const bool want_term = interval_len < epsilon || counter == static_cast<int>(global_iterations);
if (!(++counter % T) || stagnation) {
if (!want_term) {
MultiCrossMsg out;
float s_x1, s_x2, e_x1, e_x2;
HitTest2D_analytic(top_ptr->x1, s_x1, s_x2);
HitTest2D_analytic(top_ptr->x2, e_x1, e_x2);
out.intervals[0] = s_x1;
out.intervals[1] = s_x2;
out.intervals[2] = e_x1;
out.intervals[3] = e_x2;
out.intervals[4] = top_ptr->R;
out.count = 1;
int i2 = 0;
while (i2 < world_size) {
if (i2 != rank) g_world->isend(i2, 0, out);
++i2;
}
}
}
if (want_term) {
if (!rank) {
Extr.emplace_back(static_cast<float>(counter));
Extr.emplace_back(interval_len);
*out_len = Extr.size();
out_data = reinterpret_cast<float __restrict>(CoTaskMemAlloc(sizeof(float) * (out_len)));
memcpy(out_data, Extr.data(), sizeof(float) * (out_len));
}
return;
}
const float new_point = step(m, x_Rmax_1, x_Rmax_2, y_Rmax_1, y_Rmax_2, 2.0f, r);
float new_x1_val, new_x2_val;
HitTest2D_analytic(new_point, new_x1_val, new_x2_val);
const float new_value = RastriginFunc(new_x1_val, new_x2_val);
if (new_value < best_f) {
best_f = new_value;
Extr.emplace_back(best_f);
Extr.emplace_back(new_x1_val);
Extr.emplace_back(new_x2_val);
no_improve = 0;
}
else {
++no_improve;
}
std::pop_heap(R.begin(), R.end(), ComparePtr1D);
Interval1D const __restrict intermediate = R.back();
const float segment_x1 = intermediate->x1, segment_x2 = intermediate->x2;
const float len2 = segment_x2 - new_point, len1 = new_point - segment_x1;
Interval1D const __restrict curr = new Interval1D(segment_x1, new_point, intermediate->y1, new_value, 2.0f);
Interval1D const __restrict curr1 = new Interval1D(new_point, segment_x2, new_value, intermediate->y2, 2.0f);
const float currM = (std::max)(curr->M, curr1->M);
const size_t r_size = R.size();
if (mode) {
if (len2 + len1 == dmax) {
dmax = (std::max)(len1, len2);
for (auto pI : R) {
const float L = pI->x2 - pI->x1;
if (L > dmax) dmax = L;
}
}
if (threshold_03 > dmax && !(counter % 3) || 10.0f * dmax < initial_length) {
if (currM > Mmax) {
Mmax = currM;
m = r * Mmax;
}
const float progress = fmaf(-inv_threshold_03, dmax, 1.0f);
const float alpha = progress * progress;
const float betta = 2.0f - alpha;
const float MULTIPLIER = (1.0f / dmax) * Mmax;
const float global_coeff = fmaf(MULTIPLIER, r, -MULTIPLIER);
const float GLOBAL_FACTOR = betta * global_coeff;
curr->ChangeCharacteristic(fmaf(GLOBAL_FACTOR, len1, curr->M * alpha));
curr1->ChangeCharacteristic(fmaf(GLOBAL_FACTOR, len2, curr1->M * alpha));
RecomputeR_AffineM_AVX2_1D(R.data(), r_size, GLOBAL_FACTOR, alpha);
std::make_heap(R.begin(), R.end(), ComparePtr1D);
}
else {
if (currM > Mmax) {
if (currM < 1.15f * Mmax) {
Mmax = currM;
m = r * Mmax;
curr->ChangeCharacteristic(m);
curr1->ChangeCharacteristic(m);
}
else {
Mmax = currM;
m = r * Mmax;
curr->ChangeCharacteristic(m);
curr1->ChangeCharacteristic(m);
RecomputeR_ConstM_AVX2_1D(R.data(), r_size, m);
std::make_heap(R.begin(), R.end(), ComparePtr1D);
}
}
else {
curr->ChangeCharacteristic(m);
curr1->ChangeCharacteristic(m);
}
}
}
else {
if (currM > Mmax) {
if (currM < 1.15f * Mmax) {
Mmax = currM;
m = r * Mmax;
curr->ChangeCharacteristic(m);
curr1->ChangeCharacteristic(m);
}
else {
Mmax = currM;
m = r * Mmax;
curr->ChangeCharacteristic(m);
curr1->ChangeCharacteristic(m);
RecomputeR_ConstM_AVX2_1D(R.data(), r_size, m);
std::make_heap(R.begin(), R.end(), ComparePtr1D);
}
}
else {
curr->ChangeCharacteristic(m);
curr1->ChangeCharacteristic(m);
}
}
R.back() = curr;
std::push_heap(R.begin(), R.end(), ComparePtr1D);
R.emplace_back(curr1);
std::push_heap(R.begin(), R.end(), ComparePtr1D);
top_ptr = R.front();
x_Rmax_1 = top_ptr->x1;
x_Rmax_2 = top_ptr->x2;
y_Rmax_1 = top_ptr->y1;
y_Rmax_2 = top_ptr->y2;
}
}
__declspec(align(16)) struct RunParams final {
int nSegments;
unsigned varLen;
float minTheta;
float tx, ty;
int levels;
int maxIter;
float r;
unsigned adaptive;
float eps;
unsigned seed;
texttemplate<typename Archive> void serialize(Archive& ar, const unsigned int) { ar& nSegments& varLen& minTheta& tx& ty & levels& maxIter& r& adaptive& eps& seed; }
};
extern "C" __declspec(dllexport) __declspec(noalias) __forceinline
void AgpStartManipND(const int nSegments, const bool variableLengths, const float minTheta, const float targetX, const float targetY,
const int peanoLevels, const int maxIterPerBranch, const float r, const bool adaptiveMode, const float epsilon, const unsigned int seed) noexcept {
RunParams p;
p.nSegments = nSegments;
p.varLen = static_cast<unsigned>(variableLengths);
p.minTheta = minTheta;
p.tx = targetX;
p.ty = targetY;
p.levels = peanoLevels;
p.maxIter = maxIterPerBranch;
p.r = r;
p.adaptive = static_cast<unsigned>(adaptiveMode);
p.eps = epsilon;
p.seed = seed;
int i = 1;
const int world = g_world->size();
while (i < world) {
g_world->isend(i, 1, p);
++i;
}
}
extern "C" __declspec(dllexport) __declspec(noalias) __forceinline void AgpWaitStartAndRun() noexcept {
RunParams p;
float* __restrict q;
size_t qlen;
float bx, by, bf;
size_t oi;
float oa;
while (true) {
if (g_world->iprobe(0, 1)) {
g_world->recv(0, 1, p);
AGP_Manip2D(p.nSegments, static_cast<bool>(p.varLen), p.minTheta, p.tx, p.ty, p.levels, p.maxIter, p.r, static_cast<bool>(p.adaptive), p.eps, p.seed, &q, &qlen, &bx, &by, &bf, &oi, &oa);
}
Sleep(0);
}
}
extern "C" __declspec(dllexport) __declspec(noalias) __forceinline void AgpWaitStartAndRun2D() noexcept {
int dummy;
float* __restrict buf;
size_t len;
while (true) {
if (g_world->iprobe(0, 1)) {
g_world->recv(0, 1, dummy);
AGP_2D(2.0f, 10000.0f, -2.2f, 1.8f, -2.2f, 1.8f, 2.5f, false, 0.00001f, static_cast<float>(GetTickCount()), &buf, &len);
}
Sleep(0);
}
}
extern "C" __declspec(dllexport) __declspec(noalias) __forceinline void AgpStartWorkers() noexcept {
int i = 1;
const int world = g_world->size();
while (i < world) {
g_world->isend(i, 1, 0);
++i;
}
}
extern "C" __declspec(dllexport) __declspec(noalias) __forceinline void AGP_Free(float* const p) noexcept {
CoTaskMemFree(p);
}", код интерфейса c++/clr, код MyForm.h: "#pragma once
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
using namespace System;
using namespace System::Drawing;
using namespace System::Windows::Forms;
using namespace System::Collections::Generic;
using namespace System::Drawing::Drawing2D;
using namespace System::Diagnostics;
using namespace System::Globalization;
using namespace System::Runtime::CompilerServices;
typedef void(__cdecl* P_MANIP)(int, bool, float, float, float, int, int, float, bool, float, unsigned int, float**, size_t*, float*, float*, float*, size_t*, float*);
typedef void(__cdecl* P_FREE)(float*);
typedef void(__cdecl* P_START)(int, bool, float, float, float, int, int, float, bool, float, unsigned int);
namespace TESTAGP {
textpublic enum class OptimizerBackend { AgpCpp = 0, Optuna = 1, IOpt = 2 }; public ref class MyForm sealed : public Form { public: MyForm(HMODULE hLib) : hLib(hLib) { this->SetStyle(ControlStyles::AllPaintingInWmPaint | ControlStyles::UserPaint | ControlStyles::OptimizedDoubleBuffer, true); this->Text = L"AGP Manipulator 2D"; this->ClientSize = System::Drawing::Size(1200, 800); this->Resize += gcnew EventHandler(this, &MyForm::OnResize); fManip = reinterpret_cast<P_MANIP>(GetProcAddress(hLib, "AGP_Manip2D")); pFree = reinterpret_cast<P_FREE>(GetProcAddress(hLib, "AGP_Free")); pStart = reinterpret_cast<P_START>(GetProcAddress(hLib, "AgpStartManipND")); angles = gcnew List<float>(8); lengths = gcnew List<float>(8); backend = OptimizerBackend::AgpCpp; InitGraphicsResources(); InitUI(); ResetRandomConfig(); } private: initonly HMODULE hLib; initonly P_MANIP fManip; initonly P_FREE pFree; initonly P_START pStart; OptimizerBackend backend; ComboBox^ cbBackend; int nSegments; bool variableLengths; List<float>^ angles; List<float>^ lengths; CheckBox^ cbVarLen; NumericUpDown^ nudMinTheta; NumericUpDown^ nudBaseLength; NumericUpDown^ nudStretchFactor; NumericUpDown^ nudTargetX; NumericUpDown^ nudTargetY; NumericUpDown^ nudLevels; NumericUpDown^ nudMaxIter; CheckBox^ cbAdaptive; NumericUpDown^ nudR; NumericUpDown^ nudEps; Button^ btnAdd; Button^ btnRem; Button^ btnOptimize; Label^ lblInfo; UInt32 rngState = 0xA5C39E0Du; System::Drawing::Font^ uiFontBold11; System::Drawing::Font^ uiFontBold10; Pen^ wallPen; Pen^ dashedPen; Pen^ targetPen; Pen^ penRod; SolidBrush^ jointBrush; HatchBrush^ wallHatchBrush; void InitGraphicsResources() { uiFontBold11 = gcnew System::Drawing::Font("Yu Gothic UI", 11, FontStyle::Bold); uiFontBold10 = gcnew System::Drawing::Font("Yu Gothic UI", 10, FontStyle::Bold); wallPen = gcnew Pen(Color::Black, 2.0f); dashedPen = gcnew Pen(Color::Black, 2.0f); dashedPen->DashStyle = DashStyle::Dash; targetPen = gcnew Pen(Color::Green, 3.0f); targetPen->DashStyle = DashStyle::Dot; penRod = gcnew Pen(Color::Red, 6.0f); jointBrush = gcnew SolidBrush(Color::Blue); wallHatchBrush = gcnew HatchBrush(HatchStyle::BackwardDiagonal, Color::LightGray, Color::White); } void InitUI() { cbBackend = gcnew ComboBox(); cbBackend->Location = Point(920, 52); cbBackend->Width = 260; cbBackend->Height = 28; cbBackend->DropDownStyle = ComboBoxStyle::DropDownList; cbBackend->Font = uiFontBold11; cbBackend->BackColor = SystemColors::Info; cbBackend->FlatStyle = FlatStyle::Flat; cbBackend->Items->Add(L"AGP"); cbBackend->Items->Add(L"Optuna"); cbBackend->Items->Add(L"iOpt"); cbBackend->SelectedIndex = 0; cbBackend->SelectedIndexChanged += gcnew EventHandler(this, &MyForm::OnBackendChanged); this->Controls->Add(cbBackend); Label^ L; L = gcnew Label(); L->Text = L"Мин. угол (рад)"; L->Location = Point(20, 20); L->Width = 200; L->Font = uiFontBold11; this->Controls->Add(L); nudMinTheta = gcnew NumericUpDown(); nudMinTheta->Location = Point(20, 52); nudMinTheta->Width = 200; nudMinTheta->DecimalPlaces = 3; nudMinTheta->Minimum = Decimal(1) / Decimal(100); nudMinTheta->Maximum = Decimal(314159) / Decimal(100000); nudMinTheta->Value = Decimal(150) / Decimal(100); nudMinTheta->Font = uiFontBold10; nudMinTheta->ValueChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(nudMinTheta); L = gcnew Label(); L->Text = L"Базовая длина"; L->Location = Point(245, 20); L->Width = 200; L->Font = uiFontBold11; this->Controls->Add(L); nudBaseLength = gcnew NumericUpDown(); nudBaseLength->Location = Point(245, 52); nudBaseLength->Width = 200; nudBaseLength->DecimalPlaces = 2; nudBaseLength->Minimum = Decimal(1) / Decimal(2); nudBaseLength->Maximum = Decimal(200) / Decimal(100); nudBaseLength->Value = Decimal(100) / Decimal(100); nudBaseLength->Font = uiFontBold10; nudBaseLength->ValueChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(nudBaseLength); L = gcnew Label(); L->Text = L"Коэф. растяжения"; L->Location = Point(470, 20); L->Width = 200; L->Font = uiFontBold11; this->Controls->Add(L); nudStretchFactor = gcnew NumericUpDown(); nudStretchFactor->Location = Point(470, 52); nudStretchFactor->Width = 200; nudStretchFactor->DecimalPlaces = 2; nudStretchFactor->Minimum = Decimal(100) / Decimal(100); nudStretchFactor->Maximum = Decimal(150) / Decimal(100); nudStretchFactor->Increment = Decimal(1) / Decimal(100); nudStretchFactor->Value = Decimal(150) / Decimal(100); nudStretchFactor->Font = uiFontBold10; nudStretchFactor->ValueChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(nudStretchFactor); cbVarLen = gcnew CheckBox(); cbVarLen->Text = L"Переменные длины"; cbVarLen->Location = Point(695, 52); cbVarLen->Width = 200; cbVarLen->Checked = false; cbVarLen->Font = uiFontBold11; cbVarLen->CheckedChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(cbVarLen); L = gcnew Label(); L->Text = L"Цель X"; L->Location = Point(20, 107); L->Width = 200; L->Font = uiFontBold11; this->Controls->Add(L); nudTargetX = gcnew NumericUpDown(); nudTargetX->Location = Point(20, 139); nudTargetX->Width = 200; nudTargetX->DecimalPlaces = 2; nudTargetX->Minimum = Decimal(-100) / Decimal(10); nudTargetX->Maximum = Decimal(100) / Decimal(10); nudTargetX->Value = Decimal(25) / Decimal(10); nudTargetX->Font = uiFontBold10; nudTargetX->ValueChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(nudTargetX); L = gcnew Label(); L->Text = L"Цель Y"; L->Location = Point(245, 107); L->Width = 200; L->Font = uiFontBold11; this->Controls->Add(L); nudTargetY = gcnew NumericUpDown(); nudTargetY->Location = Point(245, 139); nudTargetY->Width = 200; nudTargetY->DecimalPlaces = 2; nudTargetY->Minimum = Decimal(-100) / Decimal(10); nudTargetY->Maximum = Decimal(100) / Decimal(10); nudTargetY->Value = Decimal(-10) / Decimal(10); nudTargetY->Font = uiFontBold10; nudTargetY->ValueChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(nudTargetY); L = gcnew Label(); L->Text = L"Глубина развёрток"; L->Location = Point(470, 107); L->Width = 200; L->Font = uiFontBold11; this->Controls->Add(L); nudLevels = gcnew NumericUpDown(); nudLevels->Location = Point(470, 139); nudLevels->Width = 200; nudLevels->Minimum = 7; nudLevels->Maximum = 20; nudLevels->Value = 12; nudLevels->Font = uiFontBold10; nudLevels->ValueChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(nudLevels); L = gcnew Label(); L->Text = L"Надежность (r)"; L->Location = Point(695, 107); L->Width = 200; L->Font = uiFontBold11; this->Controls->Add(L); nudR = gcnew NumericUpDown(); nudR->Location = Point(695, 139); nudR->Width = 200; nudR->DecimalPlaces = 2; nudR->Minimum = Decimal(100) / Decimal(100); nudR->Maximum = Decimal(2000) / Decimal(100); nudR->Value = Decimal(250) / Decimal(100); nudR->Font = uiFontBold10; nudR->ValueChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(nudR); cbAdaptive = gcnew CheckBox(); cbAdaptive->Text = L"Адаптивная схема"; cbAdaptive->Location = Point(920, 139); cbAdaptive->Width = 200; cbAdaptive->Checked = true; cbAdaptive->Font = uiFontBold11; cbAdaptive->CheckedChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(cbAdaptive); L = gcnew Label(); L->Text = L"Точность"; L->Location = Point(20, 194); L->Width = 200; L->Font = uiFontBold11; this->Controls->Add(L); nudEps = gcnew NumericUpDown(); nudEps->Location = Point(20, 226); nudEps->Width = 200; nudEps->DecimalPlaces = 9; nudEps->Minimum = Decimal(1) / Decimal(1000000000); nudEps->Maximum = Decimal(1) / Decimal(10); nudEps->Value = Decimal(1) / Decimal(100000); nudEps->Font = uiFontBold10; nudEps->ValueChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(nudEps); L = gcnew Label(); L->Text = L"Макс. итераций"; L->Location = Point(245, 194); L->Width = 200; L->Font = uiFontBold11; this->Controls->Add(L); nudMaxIter = gcnew NumericUpDown(); nudMaxIter->Location = Point(245, 226); nudMaxIter->Width = 200; nudMaxIter->Minimum = 10; nudMaxIter->Maximum = 500000; nudMaxIter->Value = 1000; nudMaxIter->Font = uiFontBold10; nudMaxIter->Increment = 100; nudMaxIter->ValueChanged += gcnew EventHandler(this, &MyForm::OnAnyChanged); this->Controls->Add(nudMaxIter); btnAdd = gcnew Button(); btnAdd->Text = L"+ Звено"; btnAdd->Location = Point(465, 226); btnAdd->Width = 90; btnAdd->Height = 35; btnAdd->BackColor = SystemColors::Info; btnAdd->Cursor = Cursors::Hand; btnAdd->FlatAppearance->BorderColor = Color::FromArgb(64, 64, 64); btnAdd->FlatAppearance->BorderSize = 3; btnAdd->FlatAppearance->MouseDownBackColor = Color::FromArgb(128, 128, 255); btnAdd->FlatAppearance->MouseOverBackColor = Color::FromArgb(192, 192, 255); btnAdd->FlatStyle = FlatStyle::Flat; btnAdd->Font = uiFontBold11; btnAdd->ForeColor = SystemColors::ControlDarkDark; btnAdd->Click += gcnew EventHandler(this, &MyForm::OnAddClick); this->Controls->Add(btnAdd); btnRem = gcnew Button(); btnRem->Text = L"- Звено"; btnRem->Location = Point(560, 226); btnRem->Width = 90; btnRem->Height = 35; btnRem->BackColor = SystemColors::Info; btnRem->Cursor = Cursors::Hand; btnRem->FlatAppearance->BorderColor = Color::FromArgb(64, 64, 64); btnRem->FlatAppearance->BorderSize = 3; btnRem->FlatAppearance->MouseDownBackColor = Color::FromArgb(128, 128, 255); btnRem->FlatAppearance->MouseOverBackColor = Color::FromArgb(192, 192, 255); btnRem->FlatStyle = FlatStyle::Flat; btnRem->Font = uiFontBold11; btnRem->ForeColor = SystemColors::ControlDarkDark; btnRem->Click += gcnew EventHandler(this, &MyForm::OnRemClick); this->Controls->Add(btnRem); btnOptimize = gcnew Button(); btnOptimize->Text = L"Оптимизировать"; btnOptimize->Location = Point(680, 226); btnOptimize->Width = 150; btnOptimize->Height = 35; btnOptimize->BackColor = SystemColors::Info; btnOptimize->Cursor = Cursors::Hand; btnOptimize->FlatAppearance->BorderColor = Color::FromArgb(64, 64, 64); btnOptimize->FlatAppearance->BorderSize = 3; btnOptimize->FlatAppearance->MouseDownBackColor = Color::FromArgb(128, 128, 255); btnOptimize->FlatAppearance->MouseOverBackColor = Color::FromArgb(192, 192, 255); btnOptimize->FlatStyle = FlatStyle::Flat; btnOptimize->Font = uiFontBold11; btnOptimize->ForeColor = SystemColors::ControlDarkDark; btnOptimize->Click += gcnew EventHandler(this, &MyForm::OnOptimizeClick); this->Controls->Add(btnOptimize); lblInfo = gcnew Label(); lblInfo->Location = Point(835, 194); lblInfo->Size = System::Drawing::Size(335, 140); lblInfo->BorderStyle = BorderStyle::FixedSingle; lblInfo->Text = L"Готов"; lblInfo->Font = uiFontBold10; this->Controls->Add(lblInfo); } void ResetRandomConfig() { nSegments = 1; angles->Clear(); lengths->Clear(); angles->Add(1.57079637f); lengths->Add(static_cast<float>(nudBaseLength->Value)); variableLengths = false; this->Invalidate(); } [MethodImpl(MethodImplOptions::AggressiveInlining)] float Rand01() { rngState ^= rngState << 13; rngState ^= rngState >> 17; rngState ^= rngState << 5; const float inv = 1.0f / 4294967296.0f; return static_cast<float>(static_cast<unsigned int>(rngState)) * inv; } [MethodImpl(MethodImplOptions::AggressiveInlining)] float RandAngle() { return Rand01() * 6.28318548f - 3.14159274f; } void RunAgpCpp() { variableLengths = cbVarLen->Checked; const float minTheta = static_cast<float>(nudMinTheta->Value); const float tx = static_cast<float>(nudTargetX->Value); const float ty = static_cast<float>(nudTargetY->Value); const int levels = static_cast<int>(nudLevels->Value); const int maxIter = static_cast<int>(nudMaxIter->Value); const bool adaptive = cbAdaptive->Checked; const float r_param = static_cast<float>(nudR->Value); const float eps = static_cast<float>(nudEps->Value); const unsigned int seed = static_cast<unsigned int>(GetTickCount()); pStart(nSegments, variableLengths, minTheta, tx, ty, levels, maxIter, r_param, adaptive, eps, seed); LARGE_INTEGER t0; LARGE_INTEGER t1; LARGE_INTEGER fq; QueryPerformanceCounter(&t0); float* bestQ = nullptr; size_t bestQLen = 0; float bestX = 0.0f; float bestY = 0.0f; float bestF = 0.0f; size_t actualIterations = 0u; float achievedEps = 0.0f; fManip(nSegments, variableLengths, minTheta, tx, ty, levels, maxIter, r_param, adaptive, eps, seed, &bestQ, &bestQLen, &bestX, &bestY, &bestF, &actualIterations, &achievedEps); QueryPerformanceCounter(&t1); QueryPerformanceFrequency(&fq); const double micros = 1e6 * static_cast<double>(t1.QuadPart - t0.QuadPart) / static_cast<double>(fq.QuadPart); angles->Clear(); for (int i = 0; i < nSegments; ++i) { angles->Add(bestQ[i]); } lengths->Clear(); if (variableLengths) { for (int i = 0; i < nSegments; ++i) { lengths->Add(bestQ[nSegments + i]); } } else { const float baseLen = static_cast<float>(nudBaseLength->Value); for (int i = 0; i < nSegments; ++i) { lengths->Add(baseLen); } } pFree(bestQ); const float dx = bestX - tx; const float dy = bestY - ty; lblInfo->Text = String::Format( L"Результат:\n" L"Близость захвата: {0:F5}\n" L"Функционал: {1:F5}\n" L"Точка: ({2:F3}, {3:F3})\n" L"Время: {4:F0} мкс\n" L"Число шагов: {5}\n" L"Достигнутая точность: {6:E3}", Math::Sqrt(dx * dx + dy * dy), bestF, bestX, bestY, micros, actualIterations, achievedEps); this->Invalidate(); } [MethodImpl(MethodImplOptions::AggressiveInlining)] bool ParseFloat(String^ s, float% out) { return Single::TryParse( s, NumberStyles::Float, CultureInfo::InvariantCulture, out); } void RunPythonBackend(String^ which) { const int nSeg = nSegments; const bool varLen = cbVarLen->Checked; const float minTheta = static_cast<float>(nudMinTheta->Value); const float tx = static_cast<float>(nudTargetX->Value); const float ty = static_cast<float>(nudTargetY->Value); const int levels = static_cast<int>(nudLevels->Value); const int maxIter = static_cast<int>(nudMaxIter->Value); const float r_param = static_cast<float>(nudR->Value); const float eps = static_cast<float>(nudEps->Value); const bool adaptive = cbAdaptive->Checked; String^ pythonExe = System::IO::Path::Combine( Application::StartupPath, "env", "Scripts", "python.exe"); String^ scriptPath = System::IO::Path::Combine( Application::StartupPath, "optimizer_bridge.py"); ProcessStartInfo^ psi = gcnew ProcessStartInfo(); psi->FileName = pythonExe; psi->Arguments = String::Format( CultureInfo::InvariantCulture, "\"{0}\" {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11}", scriptPath, which, nSeg, varLen ? 1 : 0, minTheta, tx, ty, levels, maxIter, r_param, eps, adaptive ? 1 : 0); psi->UseShellExecute = false; psi->CreateNoWindow = true; psi->RedirectStandardOutput = true; psi->RedirectStandardError = false; psi->WorkingDirectory = Application::StartupPath; Process^ proc = Process::Start(psi); String^ stdoutAll = proc->StandardOutput->ReadToEnd(); proc->WaitForExit(); float bestF = 0.0f; float bestX = 0.0f; float bestY = 0.0f; float achievedEps = 0.0f; int iterations = 0; float micros = 0.0f; array<float>^ tempAngles = gcnew array<float>(nSeg); array<float>^ tempLengths = gcnew array<float>(nSeg); const float baseLen = static_cast<float>(nudBaseLength->Value); for (int i = 0; i < nSeg; ++i) { tempAngles[i] = 0.0f; tempLengths[i] = baseLen; } array<wchar_t>^ separators = gcnew array<wchar_t>{ '\r', '\n' }; array<String^>^ lines = stdoutAll->Split( separators, StringSplitOptions::RemoveEmptyEntries); int qIndex = 0; for each(String ^ line in lines) { array<wchar_t>^ partSeparators = gcnew array<wchar_t>{ ' ', '\t' }; array<String^>^ parts = line->Split( partSeparators, StringSplitOptions::RemoveEmptyEntries); if (parts->Length == 0) { continue; } String^ key = parts[0]; if (key == "Q") { for (int i = 1; i < parts->Length && qIndex < (varLen ? 2 * nSeg : nSeg); ++i) { float qVal; if (ParseFloat(parts[i], qVal)) { if (qIndex < nSeg) { tempAngles[qIndex] = qVal; } else if (varLen && qIndex < 2 * nSeg) { tempLengths[qIndex - nSeg] = qVal; } ++qIndex; } } } else if (parts->Length > 1) { String^ value = parts[1]; if (key == "BEST_F") { ParseFloat(value, bestF); } else if (key == "BEST_X") { ParseFloat(value, bestX); } else if (key == "BEST_Y") { ParseFloat(value, bestY); } else if (key == "ITERATIONS") { Int32::TryParse(value, iterations); } else if (key == "EPS") { ParseFloat(value, achievedEps); } else if (key == "TIME") { ParseFloat(value, micros); } } } angles->Clear(); lengths->Clear(); for (int i = 0; i < nSeg; ++i) { angles->Add(tempAngles[i]); lengths->Add(tempLengths[i]); } const float dx = bestX - tx; const float dy = bestY - ty; const double distance = Math::Sqrt(dx * dx + dy * dy); lblInfo->Text = String::Format( L"Результат:\n" L"Близость захвата: {0:F5}\n" L"Функционал: {1:F5}\n" L"Точка: ({2:F3}, {3:F3})\n" L"Время: {4:F0} мкс\n" L"Число шагов: {5}\n" L"Достигнутая точность: {6:E3}", distance, bestF, bestX, bestY, micros, iterations, achievedEps); this->Invalidate(); this->Refresh(); } System::Void OnBackendChanged(System::Object^ sender, System::EventArgs^ e) { switch (cbBackend->SelectedIndex) { case 0: backend = OptimizerBackend::AgpCpp; cbAdaptive->Enabled = true; break; case 1: backend = OptimizerBackend::Optuna; cbAdaptive->Enabled = false; break; case 2: backend = OptimizerBackend::IOpt; cbAdaptive->Enabled = true; break; default: backend = OptimizerBackend::AgpCpp; cbAdaptive->Enabled = true; break; } } System::Void OnResize(System::Object^ sender, System::EventArgs^ e) { this->Invalidate(); } System::Void OnAnyChanged(System::Object^ sender, System::EventArgs^ e) { this->Invalidate(); } System::Void OnAddClick(System::Object^ sender, System::EventArgs^ e) { ++nSegments; angles->Add(RandAngle()); lengths->Add(static_cast<float>(nudBaseLength->Value)); this->Invalidate(); } System::Void OnRemClick(System::Object^ sender, System::EventArgs^ e) { if (nSegments > 1) { --nSegments; angles->RemoveAt(angles->Count - 1); lengths->RemoveAt(lengths->Count - 1); this->Invalidate(); } } System::Void OnOptimizeClick(System::Object^ sender, System::EventArgs^ e) { switch (backend) { case OptimizerBackend::AgpCpp: RunAgpCpp(); break; case OptimizerBackend::Optuna: RunPythonBackend(L"optuna"); break; case OptimizerBackend::IOpt: RunPythonBackend(L"iopt"); break; } } protected: virtual void OnPaint(PaintEventArgs^ e) override { Form::OnPaint(e); Graphics^ g = e->Graphics; g->SmoothingMode = SmoothingMode::HighQuality; g->Clear(this->BackColor); System::Drawing::Rectangle drawArea(0, 180, this->ClientSize.Width, this->ClientSize.Height - 180); g->FillRectangle(Brushes::White, drawArea); const int leftWallX = drawArea.Left + this->ClientSize.Width * 25 / 100; g->DrawLine(wallPen, leftWallX, drawArea.Top, leftWallX, this->ClientSize.Height); g->FillRectangle(wallHatchBrush, leftWallX - 100, drawArea.Top, 100, this->ClientSize.Height - drawArea.Top); const float targetX = static_cast<float>(nudTargetX->Value); const float targetY = static_cast<float>(nudTargetY->Value); const int baseX = leftWallX; const int baseY = drawArea.Top + drawArea.Height / 2; const float pixelTargetX = static_cast<float>(baseX) + targetX * 160.0f; const float pixelTargetY = static_cast<float>(baseY) - targetY * 160.0f; int rightWallX = static_cast<int>(pixelTargetX + 8.0f); if (rightWallX > drawArea.Right - 10) { rightWallX = drawArea.Right - 10; } g->DrawLine(dashedPen, rightWallX, drawArea.Top, rightWallX, this->ClientSize.Height); g->FillRectangle(wallHatchBrush, rightWallX, drawArea.Top, 100, this->ClientSize.Height - drawArea.Top); g->DrawEllipse(targetPen, pixelTargetX - 8.0f, pixelTargetY - 8.0f, 16.0f, 16.0f); cli::array<PointF>^ pts = gcnew cli::array<PointF>(nSegments + 1); pts[0] = PointF(static_cast<float>(baseX), static_cast<float>(baseY)); float x = 0.0f; float y = 0.0f; float phi = 0.0f; array<float>^ localAngles = angles->ToArray(); array<float>^ localLengths = lengths->ToArray(); for (int i = 0; i < nSegments; ++i) { const float theta = localAngles[i]; const float L = localLengths[i]; phi += theta; x += L * static_cast<float>(Math::Cos(static_cast<double>(phi))); y += L * static_cast<float>(Math::Sin(static_cast<double>(phi))); pts[i + 1] = PointF(static_cast<float>(baseX) + x * 160.0f, static_cast<float>(baseY) - y * 160.0f); } for (int i = 0; i < nSegments; ++i) { g->DrawLine(penRod, pts[i], pts[i + 1]); } for (int i = 0; i <= nSegments; ++i) { g->FillEllipse(jointBrush, pts[i].X - 8.0f, pts[i].Y - 8.0f, 16.0f, 16.0f); } } };
}", MyForm.cpp: "#include "MyForm.h"
using namespace System;
using namespace System::Windows::Forms;
typedef int(__cdecl* PInit)(int, float, float, float, float);
typedef void(__cdecl* PStartWorkers)();
[STAThread]
int main() {
HMODULE h = LoadLibraryW(L"TEST_FUNC.dll");
auto AgpInit = (PInit)GetProcAddress(h, "AgpInit");
auto AgpWaitStartAndRun = (PStartWorkers)GetProcAddress(h, "AgpWaitStartAndRun");
textconst int rank = AgpInit(12, -2.2f, 1.8f, -2.2f, 1.8f); if (!rank) { Application::EnableVisualStyles(); Application::SetCompatibleTextRenderingDefault(false); Application::Run(gcnew TESTAGP::MyForm(h)); } else { AgpWaitStartAndRun(); } return 0;
}", код python скрипта: "import sys
import math
import time
import statistics
from io import StringIO
import optuna
import iOpt
def forward_kinematics(angles, lengths):
n = len(angles)
phi = 0.0
x = 0.0
y = 0.0
cos = math.cos
sin = math.sin
for i in range(n):
phi += angles[i]
L = lengths[i]
x += L * cos(phi)
y += L * sin(phi)
return x, y
def manipulator_cost(angles, lengths, target_x, target_y, min_theta):
x, y = forward_kinematics(angles, lengths)
dx = x - target_x
dy = y - target_y
sqrt = math.sqrt
pow_ = math.pow
log1p = math.log1p
exp = math.exp
abs_ = abs
dist = sqrt(dx * dx + dy * dy)
arch_bias_w = 0.02
arch_bias_k = 3.0
sharp_w = 0.05
scale = 2.0 / (min_theta + 1e-6)
pen_c = 0.0
arch_pen = 0.0
for theta in angles:
a = abs_(theta)
v = a - min_theta
if v > 0.0:
pen_c += sharp_w * (pow_(2.0, scale * v) - 1.0)
t = -theta * arch_bias_k
if t > 10.0:
sp = t
else:
sp = log1p(exp(t))
arch_pen += arch_bias_w * sp
return dist + pen_c + arch_pen
def build_angles_lengths(trial, n_seg, var_len):
theta0_min = -1.0471975511965977
theta0_max = 2.6179938779914944
theta_min = -2.6179938779914944
theta_max = 2.6179938779914944
suggest_float = trial.suggest_float
angles = []
if n_seg > 0:
angles.append(suggest_float("theta_0", theta0_min, theta0_max))
for i in range(1, n_seg):
name = "theta_" + str(i)
angles.append(suggest_float(name, theta_min, theta_max))
if var_len:
lengths = []
for i in range(n_seg):
name = "L_" + str(i)
lengths.append(suggest_float(name, 0.5, 2.0))
else:
lengths = [1.0] * n_seg
return angles, lengths
def run_optuna(n_seg, var_len, min_theta, tx, ty, max_iter, r_param, eps):
optuna.logging.set_verbosity(optuna.logging.ERROR)
build = build_angles_lengths
cost = manipulator_cost
textdef objective(trial): angles, lengths = build(trial, n_seg, var_len) return cost(angles, lengths, tx, ty, min_theta) study = optuna.create_study(direction="minimize") start_time = time.perf_counter() study.optimize(objective, n_trials=max_iter, show_progress_bar=False) elapsed_micros = (time.perf_counter() - start_time) * 1e6 best_trial = study.best_trial best_f = best_trial.value params = best_trial.params angles = [params["theta_" + str(i)] for i in range(n_seg)] if var_len: lengths = [params["L_" + str(i)] for i in range(n_seg)] else: lengths = [1.0] * n_seg best_x, best_y = forward_kinematics(angles, lengths) trials = study.trials iterations = len(trials) recent_trials = max(1, iterations // 10) recent_values = [t.value for t in trials[-recent_trials:] if t.value is not None] achieved_eps = statistics.stdev(recent_values) q_values = angles + lengths print("BEST_F", best_f) print("BEST_X", best_x) print("BEST_Y", best_y) print("ITERATIONS", iterations) print("EPS", achieved_eps) print("TIME", int(elapsed_micros)) print("Q", " ".join(str(q) for q in q_values))
def run_iopt(n_seg, var_len, min_theta, tx, ty, max_iter, r_param, eps, adaptive):
old_stdout = sys.stdout
old_stderr = sys.stderr
sys.stdout = StringIO()
sys.stderr = StringIO()
build = build_angles_lengths
cost = manipulator_cost
textdef objective(trial): angles, lengths = build(trial, n_seg, var_len) return cost(angles, lengths, tx, ty, min_theta) study = iOpt.create_study() params = iOpt.SolverParameters(r=r_param, eps=eps, iters_limit=max_iter, refine_solution=adaptive) study.optimize(objective=objective, solver_parameters=params, type_of_painter="none", console_mode="off") sys.stdout = old_stdout sys.stderr = old_stderr best_params = study.best_float_params_() angles = best_params[:n_seg] if var_len: lengths = best_params[n_seg:n_seg * 2] else: lengths = [1.0] * n_seg best_f = study.best_values_() best_x, best_y = forward_kinematics(angles, lengths) solution = getattr(study, "solution", None) achieved_eps = solution.solution_accuracy iterations = solution.number_of_global_trials elapsed_micros = solution.solving_time * 1e6 q_values = angles + lengths print("BEST_F", best_f) print("BEST_X", best_x) print("BEST_Y", best_y) print("ITERATIONS", iterations) print("EPS", achieved_eps) print("TIME", int(elapsed_micros)) print("Q", " ".join(str(q) for q in q_values))
def main():
argv = sys.argv
backend = argv[1]
n_seg = int(argv[2])
var_len = bool(int(argv[3]))
min_theta = float(argv[4])
tx = float(argv[5])
ty = float(argv[6])
_levels = int(argv[7])
max_iter = int(argv[8])
r_param = float(argv[9])
eps = float(argv[10])
adaptive = bool(int(argv[11]))
if backend == "optuna":
run_optuna(n_seg, var_len, min_theta, tx, ty, max_iter, r_param, eps)
elif backend == "iopt":
run_iopt(n_seg, var_len, min_theta, tx, ty, max_iter, r_param, eps, adaptive)
if name == "main":
main()" - реализация верна, все алгоритмы считаются правильно - так что не трать время на проверку корректности реализаций - тут всё точно хорошо, сконцентрируйся на построении графиков, я думаю скопировать целиком это приложение и заменить визуальный интерфейс добавив там объект c++/clr chart для отрисовки графиков, то есть можно вообще убрать все кнопки и все поля и лейблы и т д из интерфейса а сделать так чтобы сразу при загрузке формы рисовались три графика на одном chart для зависимости времени выполнения от числа итераций - имеется ввиду что должно под капотом происходить много запусков каждого алгоритма при параметрах по умолчанию - при тех которые сейчас установлены, для iOpt например как для полностью детерменированного алгоритма можно делать по одному запуску при допустимом максимальном числе итераций начиная с 100 заканчивая 1000 с шагом 100, но на графиках по оси абсцисс откладывать всё равно реально затраченное число итераций, по оси ординат - затраченное время, для optuna - делать по 10 испытаний при каждом пороге итераций - 10 испытаний при 100 итерациях, 10 при 200 - и т д тоже до 1000, - и откладывать для каждого порога итераций среднее значение по результатам 10 испытаний для каждого порога, для AGP также как для optuna нужно проводить много испытаний - так как AGP тоже не детерменирован, тоже по 10 испытаний на каждый порог итераций и вывод среднего - также для алгоритма AGP нужно будет убрать полностью условие останова по точности - чтобы останов только по макс числу итераций, также в приложении должны выводиться результаты для всех трёх реализаций и статистика в отдельные окошке с учётом стандартного отклонения и корня из среднеквадратической ошибки как например в предыдущей моей работе: "Для корректного сравнения алгоритмов при фиксированных дискретных параметрах и варьируемых непрерывных значениях для Optuna аналогично предыдущему сравнению проведем серию из 20 независимых запусков.Как и ранее, будем усреднять полученные значения, рассчитывать стандартное отклонение (σ) и корень из среднеквадратической ошибки (√MSE) относительно детерминированного решения iOpt. Результаты представим в виде таблиц для наглядного сравнения производительности алгоритмов в новых условиях задачи, результаты сравнения наглядно представим в следующих таблицах:Таблица 1.Сравнение результатов оптимизации: Optuna vs iOptvs собственная реализацияOptuna (μ ± σ)iOptсобственная реализацияN435± 41257295t5.575± 0.9260.2044540.054429f -97.12516765± 5.647-98.83353268-98.699477x10.00137987± 0.0005-0.002734380.007035065x20.061889± 0.2930.012890620.030472564697
24Таблица 2.Отклонение результатов Optuna и собственной реализации от iOpt√MSE(для Optuna)|∆|(для собственной реализации)N (число шагов метода)22038t (время выполнения)5.6470.150025f (найденный оптимум)3.9870.13405568x10.0078680.004300685x20.3140.017581945Как видно из результатов, для непрерывного случая iOpt, так же,как и для смешанного, демонстрирует более высокую эффективность по сравнению с Optuna при оптимизации функции Растригина, что ожидаемо ввиду реализации в iOptдетерминированного метода липшицевой оптимизации. Алгоритм обеспечивает гарантированную сходимость к глобальному экстремуму с заданной точностью, что объясняет его стабильно высокие результаты в обоих типах задач.Несмотря на использование непрерывных параметров, Optuna вновь продемонстрировала значительный разброс результатов.Результаты подтверждают общее свойство байесовской оптимизации: при достаточном количестве испытаний вероятностный алгоритм может достигать высокой точности, однако:требует существенно больше вычислительных ресурсов;демонстрирует нестабильность результатов между запусками (что было показано в предыдущем эксперименте);сильно зависит от удачности выборки точек на начальных итерациях.При сравнении iOpt с предложенным алгоритмом на C++ наблюдается схожееповедение, что ожидаемо, поскольку обе реализации используют детерминированный подход:число итераций: 257 (iOpt) vs 295 (C++) -различие в пределах 15%;найденный оптимум: -98.8335 (iOpt) vs -98.6995 (C++) -расхождение менее 0.14%;" - графики зависимости времени выполнения от числа итераций должны начинаться из нуля, аналогично построй графики зависимости значения целевой функции от числа итераций (именно значения целевой функции не точности!), для времени подбери адекватный масштаб или полагайся на автоподбор масштаба chat c++/clr, для второго графика chart (опять же с трёма линиями для каждой реализации) - аналогично - мне верни полный исправленный код интерфейса и где у AGP отключить останов по достигнутой точности
Сделаю так:
agp_run_branch_mpi (многомерный AGP / AGP_Manip2D)Внутри функции agp_run_branch_mpi в конце основного цикла while (it < maxIter) у вас сейчас:
cppif ((exp2f((1.0f / dim_f) * log2f(interval_len)) < eps) || (it == maxIter)) { out_iterations = static_cast<size_t>(it); out_achieved_epsilon = interval_len; return; }
Нужно убрать остановку по точности, оставив только ограничение по итерациям:
cppif (it == maxIter) { out_iterations = static_cast<size_t>(it); // Можно оставить как есть для логирования «достигнутой точности» out_achieved_epsilon = interval_len; return; }
То есть eps остаётся параметром, но больше не используется как критерий останова.
AGP_1DСейчас:
cppif (++counter == static_cast<int>(global_iterations) || interval_len < epsilon) { Extr.emplace_back(static_cast<float>(counter)); Extr.emplace_back(interval_len); *out_len = Extr.size(); *out_data = static_cast<float*>(CoTaskMemAlloc(sizeof(float) * (*out_len))); memcpy(*out_data, Extr.data(), sizeof(float) * (*out_len)); return; }
Должно стать:
cppif (++counter == static_cast<int>(global_iterations)) { Extr.emplace_back(static_cast<float>(counter)); Extr.emplace_back(interval_len); *out_len = Extr.size(); *out_data = static_cast<float*>(CoTaskMemAlloc(sizeof(float) * (*out_len))); memcpy(*out_data, Extr.data(), sizeof(float) * (*out_len)); return; }
AGP_2DСейчас:
cppconst bool want_term = interval_len < epsilon || counter == static_cast<int>(global_iterations); ... if (want_term) { if (!rank) { Extr.emplace_back(static_cast<float>(counter)); Extr.emplace_back(interval_len); *out_len = Extr.size(); *out_data = reinterpret_cast<float* __restrict>(CoTaskMemAlloc(sizeof(float) * (*out_len))); memcpy(*out_data, Extr.data(), sizeof(float) * (*out_len)); } return; }
Нужно:
cppconst bool want_term = (counter == static_cast<int>(global_iterations)); ... if (want_term) { if (!rank) { Extr.emplace_back(static_cast<float>(counter)); Extr.emplace_back(interval_len); *out_len = Extr.size(); *out_data = reinterpret_cast<float* __restrict>(CoTaskMemAlloc(sizeof(float) * (*out_len))); memcpy(*out_data, Extr.data(), sizeof(float) * (*out_len)); } return; }
После этих трёх правок все AGP-варианты будут останавливаться только по лимиту итераций, что вам и нужно для «честного» сравнения.
Ниже — полный новый код MyForm.h и актуальный MyForm.cpp.
При запуске (ранг 0):
Chart с графиком время vs число итераций (3 линии: AGP, Optuna, iOpt),Chart с графиком f vs число итераций (3 линии),TextBox со сводной статистикой.Под капотом:
при желании вы их легко поправите в одном месте.cppnSegments = 1; variableLengths = false; minTheta = 1.5f; targetX = 2.5f; targetY = -1.0f; peanoLevels = 12; rParam = 2.5f; epsParam = 1.0e-5f; // хоть eps и не влияет на остановку AGP
cpp{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}
iterations,AgpStartManipND(...),AGP_Manip2D(...) через QueryPerformanceCounter,actualIterations и bestF из AGP,Ось X временного графика начинается с нуля (AxisX->Minimum = 0; AxisY->Minimum = 0 для времени, и AxisX->Minimum = 0 для графика f).
MyForm.hcpp#pragma once #define WIN32_LEAN_AND_MEAN #include <Windows.h> #include <cstddef> using namespace System; using namespace System::Drawing; using namespace System::Windows::Forms; using namespace System::Collections::Generic; using namespace System::Diagnostics; using namespace System::Globalization; using namespace System::Runtime::CompilerServices; using namespace System::IO; using namespace System::Windows::Forms::DataVisualization::Charting; typedef void(__cdecl* P_MANIP)( int, bool, float, float, float, int, int, float, bool, float, unsigned int, float**, size_t*, float*, float*, float*, size_t*, float* ); typedef void(__cdecl* P_FREE)(float*); typedef void(__cdecl* P_START)( int, bool, float, float, float, int, int, float, bool, float, unsigned int ); namespace TESTAGP { public enum class OptimizerKind { AgpCpp = 0, Optuna = 1, IOpt = 2 }; public ref class MyForm sealed : public Form { public: MyForm(HMODULE hLib) : hLib(hLib), experimentsStarted(false) { this->Text = L"AGP vs Optuna vs iOpt – сравнение производительности"; this->ClientSize = System::Drawing::Size(1200, 800); this->SetStyle(ControlStyles::AllPaintingInWmPaint | ControlStyles::UserPaint | ControlStyles::OptimizedDoubleBuffer, true); fManip = reinterpret_cast<P_MANIP>(GetProcAddress(hLib, "AGP_Manip2D")); pFree = reinterpret_cast<P_FREE>(GetProcAddress(hLib, "AGP_Free")); pStart = reinterpret_cast<P_START>(GetProcAddress(hLib, "AgpStartManipND")); if (!fManip || !pFree || !pStart) { MessageBox::Show( L"Не удалось получить адреса функций из TEST_FUNC.dll", L"Ошибка", MessageBoxButtons::OK, MessageBoxIcon::Error); this->Close(); return; } // Параметры задачи – аналоги текущих дефолтов в интерфейсе nSegments = 1; // при желании поменяйте на 3, 4, ... variableLengths = false; minTheta = 1.5f; // рад targetX = 2.5f; targetY = -1.0f; peanoLevels = 12; rParam = 2.5f; epsParam = 1.0e-5f; // в AGP на остановку уже не влияет uiFontBold11 = gcnew System::Drawing::Font("Yu Gothic UI", 11, FontStyle::Bold); uiFontBold10 = gcnew System::Drawing::Font("Yu Gothic UI", 10, FontStyle::Regular); pythonExe = Path::Combine(Application::StartupPath, "env", "Scripts", "python.exe"); scriptPath = Path::Combine(Application::StartupPath, "optimizer_bridge.py"); InitUI(); this->Shown += gcnew EventHandler(this, &MyForm::OnFormShown); this->Resize += gcnew EventHandler(this, &MyForm::OnResizeInternal); } private: // --- поля --- initonly HMODULE hLib; initonly P_MANIP fManip; initonly P_FREE pFree; initonly P_START pStart; System::Drawing::Font^ uiFontBold11; System::Drawing::Font^ uiFontBold10; Chart^ chartTime; Chart^ chartF; TextBox^ tbStats; bool experimentsStarted; // Параметры задачи для всех трёх алгоритмов int nSegments; bool variableLengths; float minTheta; float targetX; float targetY; int peanoLevels; float rParam; float epsParam; String^ pythonExe; String^ scriptPath; // --- UI --- void InitUI() { chartTime = gcnew Chart(); chartF = gcnew Chart(); tbStats = gcnew TextBox(); chartTime->Parent = this; chartF->Parent = this; tbStats->Parent = this; chartTime->Text = L"Время vs итерации"; chartF->Text = L"f vs итерации"; chartTime->BorderlineDashStyle = ChartDashStyle::Solid; chartTime->BorderlineWidth = 1; chartTime->BorderlineColor = Color::Black; chartF->BorderlineDashStyle = ChartDashStyle::Solid; chartF->BorderlineWidth = 1; chartF->BorderlineColor = Color::Black; ChartArea^ areaTime = gcnew ChartArea("TimeArea"); areaTime->AxisX->Title = "Число итераций"; areaTime->AxisY->Title = "Время, мкс"; areaTime->AxisX->Minimum = 0.0; // график начинается с нуля areaTime->AxisY->Minimum = 0.0; chartTime->ChartAreas->Add(areaTime); Legend^ legendTime = gcnew Legend("LegendTime"); legendTime->Docking = Docking::Top; chartTime->Legends->Add(legendTime); // три серии времени: AGP, Optuna, iOpt CreateSeries(chartTime, "AGP", "TimeArea"); CreateSeries(chartTime, "Optuna", "TimeArea"); CreateSeries(chartTime, "iOpt", "TimeArea"); ChartArea^ areaF = gcnew ChartArea("FArea"); areaF->AxisX->Title = "Число итераций"; areaF->AxisY->Title = "Значение целевой функции f"; areaF->AxisX->Minimum = 0.0; // по X тоже с нуля chartF->ChartAreas->Add(areaF); Legend^ legendF = gcnew Legend("LegendF"); legendF->Docking = Docking::Top; chartF->Legends->Add(legendF); // три серии f: AGP, Optuna, iOpt CreateSeries(chartF, "AGP", "FArea"); CreateSeries(chartF, "Optuna", "FArea"); CreateSeries(chartF, "iOpt", "FArea"); tbStats->Multiline = true; tbStats->ReadOnly = true; tbStats->ScrollBars = ScrollBars::Vertical; tbStats->Font = uiFontBold10; tbStats->Text = L"Подготовка..."; OnResizeInternal(nullptr, nullptr); } void CreateSeries(Chart^ chart, String^ name, String^ areaName) { Series^ s = gcnew Series(name); s->ChartType = SeriesChartType::Line; s->ChartArea = areaName; s->BorderWidth = 3; s->MarkerStyle = MarkerStyle::Circle; s->MarkerSize = 6; chart->Series->Add(s); } void OnResizeInternal(Object^, EventArgs^) { int margin = 10; int statsWidth = 280; int totalWidth = this->ClientSize.Width; int totalHeight = this->ClientSize.Height; if (totalWidth < 400) totalWidth = 400; if (totalHeight < 300) totalHeight = 300; int chartsWidth = totalWidth - statsWidth - 3 * margin; if (chartsWidth < 200) chartsWidth = 200; int chartHeight = (totalHeight - 3 * margin) / 2; chartTime->Location = Point(margin, margin); chartTime->Size = System::Drawing::Size(chartsWidth, chartHeight); chartF->Location = Point(margin, 2 * margin + chartHeight); chartF->Size = System::Drawing::Size(chartsWidth, chartHeight); tbStats->Location = Point(2 * margin + chartsWidth, margin); tbStats->Size = System::Drawing::Size(statsWidth, totalHeight - 2 * margin); } void OnFormShown(Object^, EventArgs^) { if (experimentsStarted) return; experimentsStarted = true; try { RunAllExperiments(); } catch (Exception^ ex) { tbStats->Text = L"Ошибка при выполнении экспериментов:\r\n" + ex->ToString(); } } // --- Вспомогательные статистические функции --- static void ComputeMeanStd(List<double>^ values, double% mean, double% stdDev) { int n = values->Count; if (n == 0) { mean = Double::NaN; stdDev = Double::NaN; return; } double sum = 0.0; for each (double v in values) { sum += v; } mean = sum / n; if (n == 1) { stdDev = 0.0; return; } double var = 0.0; for each (double v in values) { double d = v - mean; var += d * d; } stdDev = Math::Sqrt(var / (n - 1)); } static double ComputeMean(List<double>^ values) { double m, s; ComputeMeanStd(values, m, s); return m; } static bool ParseDouble(String^ s, double% outVal) { return Double::TryParse( s, NumberStyles::Float | NumberStyles::AllowThousands, CultureInfo::InvariantCulture, outVal ); } // --- Запуск Python-бэкенда (Optuna / iOpt) один раз --- bool RunPythonSingle( String^ backend, int maxIter, double% outBestF, double% outBestX, double% outBestY, int% outIterations, double% outEps, double% outMicros) { if (!File::Exists(pythonExe)) { throw gcnew InvalidOperationException( L"Не найден python.exe по пути: " + pythonExe); } if (!File::Exists(scriptPath)) { throw gcnew InvalidOperationException( L"Не найден optimizer_bridge.py по пути: " + scriptPath); } ProcessStartInfo^ psi = gcnew ProcessStartInfo(); psi->FileName = pythonExe; int varLenInt = variableLengths ? 1 : 0; int adaptiveInt = 1; // для Optuna игнорируется, для iOpt используется psi->Arguments = String::Format( CultureInfo::InvariantCulture, "\"{0}\" {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11}", scriptPath, backend, nSegments, varLenInt, minTheta, targetX, targetY, peanoLevels, maxIter, rParam, epsParam, adaptiveInt ); psi->UseShellExecute = false; psi->CreateNoWindow = true; psi->RedirectStandardOutput = true; psi->RedirectStandardError = false; psi->WorkingDirectory = Application::StartupPath; Process^ proc = Process::Start(psi); if (proc == nullptr) { throw gcnew InvalidOperationException( L"Не удалось запустить Python-процесс."); } String^ stdoutAll = proc->StandardOutput->ReadToEnd(); proc->WaitForExit(); double bestF = Double::NaN; double bestX = Double::NaN; double bestY = Double::NaN; double eps = Double::NaN; double micros = Double::NaN; int iterations = 0; array<wchar_t>^ lineSep = gcnew array<wchar_t>{ '\r', '\n' }; array<String^>^ lines = stdoutAll->Split( lineSep, StringSplitOptions::RemoveEmptyEntries ); for each (String ^ line in lines) { array<wchar_t>^ partSep = gcnew array<wchar_t>{ ' ', '\t' }; array<String^>^ parts = line->Split( partSep, StringSplitOptions::RemoveEmptyEntries ); if (parts->Length == 0) continue; String^ key = parts[0]; if (key == "Q") { // Нам Q тут не нужен для графиков continue; } if (parts->Length < 2) continue; String^ valStr = parts[1]; if (key == "BEST_F") { ParseDouble(valStr, bestF); } else if (key == "BEST_X") { ParseDouble(valStr, bestX); } else if (key == "BEST_Y") { ParseDouble(valStr, bestY); } else if (key == "ITERATIONS") { Int32::TryParse(valStr, iterations); } else if (key == "EPS") { ParseDouble(valStr, eps); } else if (key == "TIME") { ParseDouble(valStr, micros); } } outBestF = bestF; outBestX = bestX; outBestY = bestY; outIterations = iterations; outEps = eps; outMicros = micros; return true; } // --- Запуск одного AGP (C++) на maxIter --- bool RunAgpSingle( int maxIter, double% outBestF, double% outBestX, double% outBestY, std::size_t% outIterations, double% outAchievedEps, double% outMicros) { float* bestQ = nullptr; std::size_t bestQLen = 0; float bestXf = 0.0f; float bestYf = 0.0f; float bestFf = 0.0f; std::size_t actualIterations = 0; float achievedEps = 0.0f; unsigned int seed = static_cast<unsigned int>(GetTickCount()); // сообщаем воркерам параметры pStart( nSegments, variableLengths, minTheta, targetX, targetY, peanoLevels, maxIter, rParam, true, // adaptiveMode: по умолчанию включаем epsParam, seed ); LARGE_INTEGER t0, t1, fq; QueryPerformanceCounter(&t0); // сам запуск AGP fManip( nSegments, variableLengths, minTheta, targetX, targetY, peanoLevels, maxIter, rParam, true, // adaptiveMode epsParam, seed, &bestQ, &bestQLen, &bestXf, &bestYf, &bestFf, &actualIterations, &achievedEps ); QueryPerformanceCounter(&t1); QueryPerformanceFrequency(&fq); double micros = 1.0e6 * static_cast<double>(t1.QuadPart - t0.QuadPart) / static_cast<double>(fq.QuadPart); if (bestQ != nullptr) { pFree(bestQ); } outBestF = static_cast<double>(bestFf); outBestX = static_cast<double>(bestXf); outBestY = static_cast<double>(bestYf); outIterations = actualIterations; outAchievedEps = static_cast<double>(achievedEps); outMicros = micros; return true; } // --- Основной эксперимент: многократные прогоны и построение графиков --- void RunAllExperiments() { // Пороги максимального числа итераций array<int>^ thresholds = gcnew array<int>{ 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 }; const int steps = thresholds->Length; const int repeatsStochastic = 10; // для AGP и Optuna // Массивы средних значений и std по порогам array<double>^ agpIterMean = gcnew array<double>(steps); array<double>^ agpTimeMean = gcnew array<double>(steps); array<double>^ agpTimeStd = gcnew array<double>(steps); array<double>^ agpFMean = gcnew array<double>(steps); array<double>^ agpFStd = gcnew array<double>(steps); array<double>^ optunaIterMean = gcnew array<double>(steps); array<double>^ optunaTimeMean = gcnew array<double>(steps); array<double>^ optunaTimeStd = gcnew array<double>(steps); array<double>^ optunaFMean = gcnew array<double>(steps); array<double>^ optunaFStd = gcnew array<double>(steps); array<double>^ ioptIter = gcnew array<double>(steps); array<double>^ ioptTime = gcnew array<double>(steps); array<double>^ ioptF = gcnew array<double>(steps); // Инициализируем NaN'ами, чтобы не рисовать незаполненные точки for (int i = 0; i < steps; ++i) { agpIterMean[i] = Double::NaN; agpTimeMean[i] = Double::NaN; agpTimeStd[i] = Double::NaN; agpFMean[i] = Double::NaN; agpFStd[i] = Double::NaN; optunaIterMean[i] = Double::NaN; optunaTimeMean[i] = Double::NaN; optunaTimeStd[i] = Double::NaN; optunaFMean[i] = Double::NaN; optunaFStd[i] = Double::NaN; ioptIter[i] = Double::NaN; ioptTime[i] = Double::NaN; ioptF[i] = Double::NaN; } // Для глобальных μ, σ List<double>^ agpTimesAll = gcnew List<double>(); List<double>^ agpFAll = gcnew List<double>(); List<double>^ optunaTimesAll = gcnew List<double>(); List<double>^ optunaFAll = gcnew List<double>(); List<double>^ ioptTimesAll = gcnew List<double>(); List<double>^ ioptFAll = gcnew List<double>(); // Для MSE по порогам относительно iOpt (берём средние по порогу) double mseTimeAgp = 0.0; double mseTimeOptuna = 0.0; double mseFAgp = 0.0; double mseFOptuna = 0.0; int mseCount = 0; for (int idx = 0; idx < steps; ++idx) { int maxIter = thresholds[idx]; // --- iOpt: один запуск для порога --- double i_bestF, i_bestX, i_bestY, i_eps, i_micros; int i_iters; RunPythonSingle(L"iopt", maxIter, i_bestF, i_bestX, i_bestY, i_iters, i_eps, i_micros); ioptIter[idx] = static_cast<double>(i_iters); ioptTime[idx] = i_micros; ioptF[idx] = i_bestF; ioptTimesAll->Add(i_micros); ioptFAll->Add(i_bestF); // --- Optuna: 10 запусков --- List<double>^ optunaIterLoc = gcnew List<double>(); List<double>^ optunaTimeLoc = gcnew List<double>(); List<double>^ optunaFLoc = gcnew List<double>(); for (int r = 0; r < repeatsStochastic; ++r) { double o_bestF, o_bestX, o_bestY, o_eps, o_micros; int o_iters; RunPythonSingle(L"optuna", maxIter, o_bestF, o_bestX, o_bestY, o_iters, o_eps, o_micros); optunaIterLoc->Add(static_cast<double>(o_iters)); optunaTimeLoc->Add(o_micros); optunaFLoc->Add(o_bestF); optunaTimesAll->Add(o_micros); optunaFAll->Add(o_bestF); Application::DoEvents(); } optunaIterMean[idx] = ComputeMean(optunaIterLoc); ComputeMeanStd(optunaTimeLoc, optunaTimeMean[idx], optunaTimeStd[idx]); ComputeMeanStd(optunaFLoc, optunaFMean[idx], optunaFStd[idx]); // --- AGP C++: 10 запусков --- List<double>^ agpIterLoc = gcnew List<double>(); List<double>^ agpTimeLoc = gcnew List<double>(); List<double>^ agpFLoc = gcnew List<double>(); for (int r = 0; r < repeatsStochastic; ++r) { double a_bestF, a_bestX, a_bestY, a_eps, a_micros; std::size_t a_iters; RunAgpSingle(maxIter, a_bestF, a_bestX, a_bestY, a_iters, a_eps, a_micros); agpIterLoc->Add(static_cast<double>(a_iters)); agpTimeLoc->Add(a_micros); agpFLoc->Add(a_bestF); agpTimesAll->Add(a_micros); agpFAll->Add(a_bestF); Application::DoEvents(); } agpIterMean[idx] = ComputeMean(agpIterLoc); ComputeMeanStd(agpTimeLoc, agpTimeMean[idx], agpTimeStd[idx]); ComputeMeanStd(agpFLoc, agpFMean[idx], agpFStd[idx]); // --- обновляем графики по мере накопления данных --- UpdateCharts( steps, idx, agpIterMean, agpTimeMean, optunaIterMean, optunaTimeMean, ioptIter, ioptTime, agpFMean, optunaFMean, ioptF ); // --- вклад в MSE относительно iOpt (если данные есть) --- if (!Double::IsNaN(ioptTime[idx]) && !Double::IsNaN(agpTimeMean[idx]) && !Double::IsNaN(optunaTimeMean[idx]) && !Double::IsNaN(agpFMean[idx]) && !Double::IsNaN(optunaFMean[idx])) { double dtAgp = agpTimeMean[idx] - ioptTime[idx]; double dtOptuna = optunaTimeMean[idx] - ioptTime[idx]; double dfAgp = agpFMean[idx] - ioptF[idx]; double dfOptuna = optunaFMean[idx] - ioptF[idx]; mseTimeAgp += dtAgp * dtAgp; mseTimeOptuna += dtOptuna * dtOptuna; mseFAgp += dfAgp * dfAgp; mseFOptuna += dfOptuna * dfOptuna; ++mseCount; } } // --- Итоговая статистика по всем точкам --- double agpTimeMu, agpTimeSigma; double agpFMu, agpFSigma; double optTimeMu, optTimeSigma; double optFMu, optFSigma; double ioptTimeMu, ioptTimeSigma; double ioptFMu, ioptFSigma; ComputeMeanStd(agpTimesAll, agpTimeMu, agpTimeSigma); ComputeMeanStd(agpFAll, agpFMu, agpFSigma); ComputeMeanStd(optunaTimesAll, optTimeMu, optTimeSigma); ComputeMeanStd(optunaFAll, optFMu, optFSigma); ComputeMeanStd(ioptTimesAll, ioptTimeMu, ioptTimeSigma); ComputeMeanStd(ioptFAll, ioptFMu, ioptFSigma); double rmseTimeAgp = (mseCount > 0) ? Math::Sqrt(mseTimeAgp / mseCount) : 0.0; double rmseTimeOptuna = (mseCount > 0) ? Math::Sqrt(mseTimeOptuna / mseCount) : 0.0; double rmseFAgp = (mseCount > 0) ? Math::Sqrt(mseFAgp / mseCount) : 0.0; double rmseFOptuna = (mseCount > 0) ? Math::Sqrt(mseFOptuna / mseCount) : 0.0; // --- выводим сводную статистику в правое окошко --- System::Text::StringBuilder^ sb = gcnew System::Text::StringBuilder(); sb->AppendLine(L"Сводная статистика (по всем порогам 100–1000)"); sb->AppendLine(L"==========================================="); sb->AppendLine(); sb->AppendLine(L"iOpt (детерминированный, 1 запуск на порог):"); sb->AppendFormat(L" Время t, мкс: μ = {0:F1}, σ = {1:F1}\r\n", ioptTimeMu, ioptTimeSigma); sb->AppendFormat(L" Целевая f: μ = {0:F5}, σ = {1:F5}\r\n", ioptFMu, ioptFSigma); sb->AppendLine(); sb->AppendLine(L"AGP (C++, 10 запусков на каждый порог):"); sb->AppendFormat(L" Время t, мкс: μ = {0:F1}, σ = {1:F1}, √MSE(t vs iOpt) = {2:F1}\r\n", agpTimeMu, agpTimeSigma, rmseTimeAgp); sb->AppendFormat(L" Целевая f: μ = {0:F5}, σ = {1:F5}, √MSE(f vs iOpt) = {2:F5}\r\n", agpFMu, agpFSigma, rmseFAgp); sb->AppendLine(); sb->AppendLine(L"Optuna (10 запусков на каждый порог):"); sb->AppendFormat(L" Время t, мкс: μ = {0:F1}, σ = {1:F1}, √MSE(t vs iOpt) = {2:F1}\r\n", optTimeMu, optTimeSigma, rmseTimeOptuna); sb->AppendFormat(L" Целевая f: μ = {0:F5}, σ = {1:F5}, √MSE(f vs iOpt) = {2:F5}\r\n", optFMu, optFSigma, rmseFOptuna); tbStats->Text = sb->ToString(); } // Обновление графиков после очередного порога void UpdateCharts( int steps, int filledUpTo, array<double>^ agpIterMean, array<double>^ agpTimeMean, array<double>^ optunaIterMean, array<double>^ optunaTimeMean, array<double>^ ioptIter, array<double>^ ioptTime, array<double>^ agpFMean, array<double>^ optunaFMean, array<double>^ ioptF) { Series^ sAgpTime = chartTime->Series["AGP"]; Series^ sOptTime = chartTime->Series["Optuna"]; Series^ sIoptTime = chartTime->Series["iOpt"]; Series^ sAgpF = chartF->Series["AGP"]; Series^ sOptF = chartF->Series["Optuna"]; Series^ sIoptF = chartF->Series["iOpt"]; sAgpTime->Points->Clear(); sOptTime->Points->Clear(); sIoptTime->Points->Clear(); sAgpF->Points->Clear(); sOptF->Points->Clear(); sIoptF->Points->Clear(); for (int i = 0; i <= filledUpTo && i < steps; ++i) { if (!Double::IsNaN(agpTimeMean[i])) { sAgpTime->Points->AddXY(agpIterMean[i], agpTimeMean[i]); } if (!Double::IsNaN(optunaTimeMean[i])) { sOptTime->Points->AddXY(optunaIterMean[i], optunaTimeMean[i]); } if (!Double::IsNaN(ioptTime[i])) { sIoptTime->Points->AddXY(ioptIter[i], ioptTime[i]); } if (!Double::IsNaN(agpFMean[i])) { sAgpF->Points->AddXY(agpIterMean[i], agpFMean[i]); } if (!Double::IsNaN(optunaFMean[i])) { sOptF->Points->AddXY(optunaIterMean[i], optunaFMean[i]); } if (!Double::IsNaN(ioptF[i])) { sIoptF->Points->AddXY(ioptIter[i], ioptF[i]); } } chartTime->Invalidate(); chartF->Invalidate(); this->Refresh(); } }; } // namespace TESTAGP
MyForm.cppТут изменений почти нет — только по смыслу: мы используем новый MyForm:
cpp#include "MyForm.h" using namespace System; using namespace System::Windows::Forms; typedef int(__cdecl* PInit)(int, float, float, float, float); typedef void(__cdecl* PStartWorkers)(); [STAThread] int main() { HMODULE h = LoadLibraryW(L"TEST_FUNC.dll"); if (!h) { MessageBox::Show(L"Не удалось загрузить TEST_FUNC.dll", L"Ошибка", MessageBoxButtons::OK, MessageBoxIcon::Error); return 1; } auto AgpInit = (PInit)GetProcAddress(h, "AgpInit"); auto AgpWaitStartAndRun = (PStartWorkers)GetProcAddress(h, "AgpWaitStartAndRun"); if (!AgpInit || !AgpWaitStartAndRun) { MessageBox::Show(L"Не удалось получить AgpInit/AgpWaitStartAndRun из TEST_FUNC.dll", L"Ошибка", MessageBoxButtons::OK, MessageBoxIcon::Error); return 1; } const int rank = AgpInit(12, -2.2f, 1.8f, -2.2f, 1.8f); if (!rank) { Application::EnableVisualStyles(); Application::SetCompatibleTextRenderingDefault(false); Application::Run(gcnew TESTAGP::MyForm(h)); } else { // worker-процессы: ждут параметров и гоняют AGP_Manip2D AgpWaitStartAndRun(); } return 0; }
Ссылка на Chart
В проекте C++/CLI в References нужно добавить:
System.Windows.Forms.DataVisualizationPython окружение
Ожидается, что:
$(OutDir)\env\Scripts\python.exe лежит ваш Python,optimizer_bridge.py (тот, что вы привели).MPI-запуск
Всё, как у вас уже было настроено: TEST_FUNC.dll с AGP, запуск рангов через MPI/MPICH и т.п. — внешний механизм не меняется.
Если хочешь, дальше можно отдельно доработать формат вывода статистики так, чтобы он один в один повторял стиль ваших таблиц (N, t, f, √MSE по каждому параметру), но базовая инфраструктура для многократных запусков, графиков и подсчёта μ, σ, √MSE здесь уже есть.