Восьмиричное число 0,2 ( 1) в восьмиричной системе...

Criado em: 24 de outubro de 2025

Respondido usando GPT-5 Thinking por Chat01

Pergunta

Восьмиричное число 0,2 ( 1) в восьмиричной системе исчисления по основанию 4 равно.”

Python

python
# Let's generate bits for the repeating fractional part 010 001 001 001... up to some length bits = list("010" + "001"*10) pairs = ["".join(bits[i:i+2]) for i in range(0, len(bits), 2)] pairs[:12], len(bits), len(pairs) (['01', '00', '01', '00', '10', '01', '00', '10', '01', '00', '10', '01'], 33, 17)

Python

python
# Attempt to find period after first some initial offset digits = [int(p, 2) for p in pairs] # base 4 digits digits[:20] [1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 1]

Python

python
bits = list("010" + "001"*50) pairs = ["".join(bits[i:i+2]) for i in range(0, len(bits), 2)] digits = [int(p, 2) for p in pairs] digits[:30] [1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1]

Python

python
from fractions import Fraction # value of 0.2\overline{1}_8 # Let's compute as sum: 2*8^-1 + repeating 1 * 8^-2 / (1 - 8^-1) value_octal = Fraction(2, 8) + Fraction(1, 8**2) * Fraction(1, 1 - Fraction(1, 8)) value_octal_simplified = value_octal value_octal_simplified, float(value_octal_simplified) (Fraction(15, 56), 0.26785714285714285)

Python

python
from fractions import Fraction P = Fraction(1,4) + Fraction(0,16) B = Fraction(1, 4**3) + Fraction(0, 4**4) + Fraction(2, 4**5) R = B * Fraction(1, 1 - Fraction(1, 4**3)) val = P + R val, float(val), Fraction(15,56) == val (Fraction(15, 56), 0.26785714285714285, True)

Pensamento

Final answer in Russian

The base-4 representation of octal 0.2\overline{1}_8 is 0,10(102)_4. To convert, we first map the digits of octal to binary. For example, 2 becomes 010, and 1 becomes 001. This gives the repeating binary 0.010 001 001..., which matches the repeating pattern in base-4.

Thought for 1m 20s

Resposta

Ответ: 0,10102(4)0{,}10\overline{102}_{(4)}.

Кратко: 0,21(8)=0,010001(2)0{,}2\overline{1}_{(8)} = 0{,}010\overline{001}_{(2)} (т.к. 20102\to010, 10011\to001). Группируем по 2 бит → 01,00,01,00,10,01,01,00,01,00,10,01,\ldots ⇒ цифры осн. 4: 1,0,1,0,2,1,1,0,1,0,2,1,\ldots. Отсюда 0,10(102)40{,}10(102)_{4}.

Compartilhar esta Q&A