这样的一个审稿意见该如何回复,并且给我相应的参考文献
Criado em: 16 de outubro de 2025
Respondido usando GPT-5 Thinking por Chat01
Criado em: 16 de outubro de 2025
Respondido usando GPT-5 Thinking por Chat01
下面给你一个可直接粘贴到「作者回复」里的英文答复模板,并附上要点式中文思路与可引用的参考文献(覆盖“25% 单轴拉伸的可行性”“如何在器件中维持/实现”“可行的自旋电子学器件架构”三块)。你可以把其中材料/器件名称替换成你的体系。
Reviewer’s comment: “…the manuscript lacks any discussion on the experimental feasibility of achieving and maintaining such a large uniaxial tensile strain in a real device… The authors should discuss how this extreme strain could be implemented within a functional spintronic device architecture.”
Response: We thank the reviewer for raising this important point. We have added a new subsection entitled “Experimental routes to large uniaxial strain and integration in spintronic devices” (pp. X–Y) that summarizes feasible approaches and cites representative demonstrations:
Strain limits in 2D membranes. Atomically thin membranes can withstand unusually high elastic strain before fracture (graphene ≈20–25% and typical TMDCs such as MoS₂ ≈10–11%). This sets an upper bound for what the active layer can tolerate, and motivates using van der Waals (vdW) crystals for extreme-strain studies. (ResearchGate)
How to apply and maintain large uniaxial strain.
• Elastomeric stretching / pre-strain: Transferring the vdW stack onto pre-stretched PDMS and then relaxing the substrate, or direct uniaxial stretching, yields large, controllable tensile strain. Kirigami micro-cuts further amplify stretchability; graphene FETs and photodetectors have been shown to operate under ≥100% macroscopic stretch, illustrating device-level robustness of contacts and channels. (aluru.mechse.illinois.edu)
• Direct evidence of high-strain device operation: Wrinkled/structured graphene FETs retain electrical characteristics at 20–30% applied strain; we cite these as concrete examples that transistor-class devices remain functional in this regime. (ACS Publications China)
• On-chip MEMS actuators: Comb-drive/electrothermal MEMS platforms can deliver in-situ, continuously tunable uniaxial strain to suspended 2D flakes while allowing simultaneous electrical/optical measurements—well suited for calibrated 5–15% strain and cyclic tests. (Wiley Online Library)
• Local strain concentration: When global 25% is impractical, local uniaxial strain of similar magnitude can be generated and stabilized via wrinkles/nanobubbles under the active region, which has been widely used in 2D materials (including the classic nanobubble experiments). (RSC Publishing)
• Preventing slippage / ensuring stability: We discuss contact and encapsulation strategies (e.g., hBN capping, metal “clamps”) and show that frictional clamping governs strain transfer and long-term stability; serpentine interconnects/island-bridge layouts accommodate substrate stretch while keeping fragile regions safe. (Boston University)
A practical spintronic architecture under strain. We outline two experimentally grounded options now added to the manuscript:
(i) vdW spin-filter MTJ: graphene/CrI₃/graphene junctions (or related vdW MTJs) integrated on a pre-strained elastomer/MEMS frame; the vdW barrier/channel can be patterned into a kirigami ribbon along the strain axis. These junctions are established spintronic building blocks with giant TMR. (Science)
(ii) All-2D spin valves: graphene spin transport with 2D ferromagnets (e.g., Fe₃GeTe₂ or Cr₂Ge₂Te₆) as injector/detector or proximitized “seamless” valves; electrodes are routed with serpentine traces to tolerate substrate stretch while the channel region is strained. (American Chemical Society Publications)
We have also clarified that piezoelectric substrates (e.g., PMN-PT) are excellent for fine in-plane strain tuning but typically deliver ≪1% in-plane strain and thus serve as a complementary route for small-strain verification rather than 25% extreme-strain tests. (arXiv)
Overall, these additions (i) justify the physical plausibility of large uniaxial strain in ultrathin vdW materials, (ii) provide concrete, device-compatible methods to apply and stabilize strain, and (iii) present realistic spintronic layouts in which our predicted Curie-temperature enhancement can be tested.
需要,我也可以把你文稿里新增的小节草稿(中文或英文)直接写好,替你对接图/表和参考文献编号。
你帮我找几篇对二维材料施加较大拉伸应变的文章
当然可以!下面按“如何在实验里实现较大拉伸应变(单轴/局域/可调)”给你挑了几篇代表性论文,每篇都附上实现方法与应变量级的一句话摘要,便于你在引言或答复审稿人时引用。
如果你告诉我更偏好的材料体系(比如 CrI₃、Fe₃GeTe₂、MoS₂、WS₂ 等)或目标应变区间(比如 ≥15% 全局 / ≥20% 局域),我可以再定向补充几篇同体系的大应变实验与具体器件演示论文。
对二维材料,目前实验上能实现的极限应变是多少?
"\u5bf9\u4e8c\u7ef4\u6750\u6599\uff0c\u76ee\u524d\u5b9e\u9a8c\u4e0a\u80fd\u5b9e\u73b0\u7684\u6781\u9650\u5e94\u53d8\u662f\u591a\u5c11\uff1f\n"
这是一个非常好的问题 — 实验上二维材料能实现的最大应变受多种因素限制(如材料本身强度、缺陷、夹持方式、应变速率、界面附着与滑移等)。下面我整理一些文献中“极限应变 / 实验突破值 / 可逆弹性上限”方面的数据和讨论,给你一个比较靠谱的参考范围和局限条件。
材料 / 系统 | 报道的最大应变 | 说明 / 限制条件 | 出处 / 备注 |
---|---|---|---|
单层石墨烯 (CVD, push-to-pull in-situ 张拉) | ~ 6% | 在 ~10 µm² 区域膜片中测得极限断裂应变约 6%;在该测试中还测得 ~60 GPa 的极限拉伸强度。(Nature) | |
MoS₂(悬挂膜、纳米力学拉伸) | ~ 10–11% | 经典文献(如 Bertolazzi 等)报告 MoS₂ 在纳米结构下可承受 ~11% 的应变。此值常被视为 TMDC 的基准极限。 | (可在该综述 /力学论文中找到)(SpringerLink) |
kirigami / 结构化石墨烯 | 高达数十 %(大幅度可伸展) | 通过在石墨烯上做 kirigami /切割结构,将应变 “扩展” 空间,实现宏观 >100% 的结构形变;但这里高应变大多靠几何重分配 / 铰链效应,而不是材料自身均匀拉伸。 | 这种方法常出现在应变工程 / 可拉伸电子器件方向的论文中(参见综述)(ScienceDirect) |
MEMS 拉伸平台中的 MoS₂ | ~1.3% | 有论文报道将单层 MoS₂ 集成到 MEMS 致动器上,实现约 1.3% 的应变。(arXiv) | |
纳米压印 (nanoimprint) 应变策略 | 未公开极限最高值 | 最近有用纳米压印法(nanoimprint-induced strain engineering, NISE)给 2D 材料施加可控应变(如在 MoS₂ 薄膜上),用于可控应变剖面控制,但论文中并未把极限应变作为主攻目标。(Nature) |
此外,一些综述和专门研究还指出:
在实验条件下,真实材料常常存在缺陷、边界裂纹、夹持不理想、界面滑移或应变不均匀等问题,这些都会显著降低可达到的应变极限。(SpringerLink)
在“非均匀应变”(即局域应变、褶皱、弯曲/曲率引入梯度应变等)策略下,可能在局部区域实现比全局应变更高的应变,但那通常不是材料在整片均匀拉伸下承受的值。(Wiley Online Library)
如果你愿意的话,我可以帮你查几篇最近两三年(2022–2025 年)针对你材料体系(比如你文中用的那种二维磁体或半导体)报道的极限应变值,以作最新对比。要我帮你查吗?