Реши задание по математике

Criado em: 17 de setembro de 2025

Respondido usando GPT-5 por Chat01

Pergunta

image.pngimage.png

Реши задание по математике

Pensamento

Solving for the cubic equation

The problem asks for a cubic equation with roots α1,β1,α+β\alpha^{-1}, \beta^{-1}, \alpha + \beta, where α\alpha and β\beta are the roots of 2x2x4=02x^2 - x - 4 = 0. From the quadratic, we found α+β=1/2\alpha + \beta = 1/2 and αβ=2\alpha \beta = -2. Now, we can compute symmetric sums for the cubic equation.

Finding the cubic equation

I calculated the symmetric sums for the cubic equation. First, I found that s1=1/4s_1 = 1/4, s2=5/8s_2 = -5/8, and s3=1/4s_3 = -1/4. The cubic equation formed is ( x^3 - \frac{1}{4} x^2 - \frac{5}{8} x + \frac{1}{

Thought for 45s

Resposta

Решение.

Дано: α,β\alpha,\beta — корни 2x2=x+42x^2=x+4, т.е. 2x2x4=02x^2- x-4=0. Тогда

α+β=ba=12,αβ=ca=2.\alpha+\beta=\frac{-b}{a}=\frac{1}{2},\qquad \alpha\beta=\frac{c}{a}=-2.

Ищем кубический многочлен с корнями α1,β1,α+β\alpha^{-1},\beta^{-1},\alpha+\beta.

Симметрические суммы этих корней:

S1=1α+1β+(α+β)=α+βαβ+(α+β)=122+12=14,S2=1αβ+(α+β) ⁣(1α+1β)=12+12122=1218=58,S3=(α+β)αβ=122=14.\begin{aligned} S_1&=\frac1\alpha+\frac1\beta+(\alpha+\beta) =\frac{\alpha+\beta}{\alpha\beta}+(\alpha+\beta) =\frac{\tfrac12}{-2}+\frac12=\frac14,\\[4pt] S_2&=\frac1{\alpha\beta}+(\alpha+\beta)\!\left(\frac1\alpha+\frac1\beta\right) =\frac1{-2}+ \frac12\cdot\frac{\tfrac12}{-2} =-\frac12-\frac18=-\frac58,\\[4pt] S_3&=\frac{(\alpha+\beta)}{\alpha\beta} =\frac{\tfrac12}{-2}=-\frac14. \end{aligned}

Значит искомое уравнение (мононичное) такое:

x3S1x2+S2xS3=0    x314x258x+14=0.x^3 - S_1 x^2 + S_2 x - S_3 = 0 \;\Longrightarrow\; x^3-\frac14x^2-\frac58x+\frac14=0.

Умножая на 88, получаем примитивное уравнение с целыми коэффициентами:

8x32x25x+2=0.\boxed{\,8x^3-2x^2-5x+2=0\,}.

Compartilhar esta Q&A