认真思考,给出步骤和答案。1 mol 理想气体,从298 K,100 kPa,经恒温,恒外压为600...

Criado em: 3 de março de 2025

Respondido usando O1 por Chat01

Pergunta

认真思考,给出步骤和答案。1 mol 理想气体,从298 K,100 kPa,经恒温,恒外压为600 kPa 时,压缩至终态。
计算过程的Q、W、ΔU、ΔH、ΔS、ΔA、ΔG。

Pensamento

Calculating values

I'm working through the problem by comparing initial and final states of 1 mol of an ideal gas, considering isothermal and external pressure changes, and calculating Q, W, ΔU, ΔH, ΔS, ΔA, and ΔG.

Establishing final pressure

OK, let me see. I’m working through the final pressure being 600 kPa, calculating volumes to explore how the pressure and volume relationship impacts the gas.

Analyzing the process

I’m looking at an irreversible isothermal compression for an ideal gas, noting that ΔU and ΔH are zero. Carefully considering the sign convention for work done by the system during compression.

Calculating work done

I’m working out the work done by the system using Pext×(final volumeinitial volume)P_{\text{ext}} \times (\text{final volume} - \text{initial volume}), considering the negative displacement due to compression.

Calculating work

First, I find V1V_1 and V2V_2 in liters. Then, I compute work WW by multiplying external pressure by the volume change, giving about 12,378 J.

Calculating work accurately

OK, let me see: the positive value of work means the surroundings are doing work on the system, consistent with the negative sign convention for compression.

Ensuring accurate signs

I'm piecing together the correct signs for work calculations. If the system's volume decreases, it does negative work. Thus, W=Pext×(V1V2)W = P_{\text{ext}} \times (V_1 - V_2).

Confirming the correct formula

OK, let me see. Going through the work formula: W=Pext×(V2V1)W = -P_{\text{ext}} \times (V_2 - V_1), I’m making sure it’s consistent with compression and typical sign conventions.

Navigating energy flow

It's interesting to see that the sign convention for work by the system is negative if the system absorbs energy from its surroundings, like during expansion. This principle underlines the conservation of energy.

Setting the convention

I’m mapping out the standard sign convention for work in thermodynamics: W>0W > 0 means compression, while W<0W < 0 means expansion. This matches the dU=Q+WdU = Q + W principle.

Confirming the sign convention

I'm piecing together the compression work formula: W=Pext×ΔVW = -P_{\text{ext}} \times \Delta V. For a volume decrease, WW is positive, indicating energy transfer is towards the system.

Tracking energy shifts

I’m pulling together Q=ΔUWQ = \Delta U - W. With WW positive (compression), QQ is negative, indicating that the system releases 12.38 kJ of heat.

Tracking entropy

For an isothermal, non-reversible process, I’m noting the entropy change formula for an ideal gas ΔS=nRln(V2/V1)\Delta S = nR \ln(V_2/V_1) to define the final state.

Evaluating entropy shift

I’m working through the entropy change, focusing on nRln(V2/V1)nR \ln(V_2/V_1), to gauge the system's final state, which captures the entropy change for both reversible and non-reversible isothermal processes.

Assessing Helmholtz free energy

I’m figuring out the Helmholtz free energy change, ΔA=TΔS\Delta A = -T \Delta S, concluding that it’s about +4.45 kJ due to the entropy reduction.

Mapping out entropy's final state

It's interesting to see that ΔS\Delta S is approximately -14.9 J/K. Confirming this, ΔG\Delta G and ΔA\Delta A are both about +4.45 kJ, consistent with isothermal processes.

Reasoned about ideal gas thermodynamics for 45 seconds

Resposta

下面给出详细的思路、计算步骤和最终结果。为方便起见,下文中所用的符号约定为:

  • WW 表示“外界对系统所做的功”(符合大多数化学热力学教科书的惯例,即压缩时 W>0W>0,膨胀时 W<0W<0)。
  • QQ 表示吸收热量(系统吸热为正,放热为负)。
  • ΔU,  ΔH,  ΔS,  ΔA,  ΔG\Delta U,\;\Delta H,\;\Delta S,\;\Delta A,\;\Delta G 分别表示系统的内能、焓、熵、Helmholtz 自由能和Gibbs 自由能的变化量。

1. 题目内容与初始信息

  • 物质n=1n=1 mol 理想气体
  • 初态 T1=298K,P1=100kPa T_1 = 298\,\mathrm{K}, \quad P_1 = 100\,\mathrm{kPa}
  • 过程:在恒温(T=298KT=298\,\mathrm{K} 保持不变)且恒外压 Pext=600kPaP_\mathrm{ext} = 600\,\mathrm{kPa} 的条件下,将气体从初态压缩到最终状态。
  • 终态:由于外压恒为 600kPa600\,\mathrm{kPa},最终平衡时系统的压强也将达到 P2=600kPaP_2 = 600\,\mathrm{kPa}(忽略其他因素)。

要求计算:

Q,  W,  ΔU,  ΔH,  ΔS,  ΔA,  ΔG.Q,\;W,\;\Delta U,\;\Delta H,\;\Delta S,\;\Delta A,\;\Delta G.

2. 计算各热力学量的思路

2.1 内能变化 ΔU\Delta U 和焓变 ΔH\Delta H

理想气体而言,内能 UU 和焓 HH 只与温度有关。当温度不变时,

ΔU=0,ΔH=0.\Delta U = 0, \quad \Delta H = 0.

因为本题指明是 等温过程T=298KT=298\,\mathrm{K} 保持不变),所以立刻有:

ΔU=0,ΔH=0.\Delta U = 0, \quad \Delta H = 0.

2.2 体积变化及功 WW

1 mol 理想气体在温度 T=298KT=298\,\mathrm{K} 下的体积由状态方程

PV=nRTPV = nRT

给出。

  • 初态体积 V1V_1

    V1=nRTP1=1×(8.314J/(molK))×298K100000Pa0.02476m3=24.76L. V_1 = \frac{nRT}{P_1} = \frac{1 \times (8.314\,\mathrm{J/(mol\cdot K)}) \times 298\,\mathrm{K}}{100\,000\,\mathrm{Pa}} \approx 0.02476\,\mathrm{m^3} = 24.76\,\mathrm{L}.
  • 终态体积 V2V_2

    V2=nRTP2=1×(8.314J/(molK))×298K600000Pa0.004126m3=4.126L. V_2 = \frac{nRT}{P_2} = \frac{1 \times (8.314\,\mathrm{J/(mol\cdot K)}) \times 298\,\mathrm{K}}{600\,000\,\mathrm{Pa}} \approx 0.004126\,\mathrm{m^3} = 4.126\,\mathrm{L}.

由于本题是不可逆压缩,且外压恒为 Pext=600kPaP_\mathrm{ext}=600\,\mathrm{kPa},则外界对系统所做的功为

W=Pext(V1V2)(约定:压缩时 W>0)W = P_\mathrm{ext}\,(V_1 - V_2) \quad (\text{约定:压缩时 } W>0)

注意这里采用的是化学热力学常用的符号约定:

  • 当系统被压缩时(V2<V1V_2 < V_1),V1V2>0V_1 - V_2 > 0,故 W>0W>0
  • 如果用“系统对外做功”为正值的老符号 convention,则要带上一个负号;但在大多数化学热力学教材里,均使用“外界对系统做功”为正值的惯例,从而公式直接是 W=Pext(V1V2)W = P_\mathrm{ext}(V_1 - V_2)

数值上:

V1V2=0.02476m3    0.004126m3=0.02063m3,W=600000Pa  ×  0.02063m3    12,380J=12.38kJ.\begin{aligned} V_1 - V_2 &= 0.02476\,\mathrm{m^3} \;-\; 0.004126\,\mathrm{m^3} = 0.02063\,\mathrm{m^3},\\[6pt] W &= 600\,000\,\mathrm{Pa}\;\times\;0.02063\,\mathrm{m^3} \;\approx\; 12{,}380\,\mathrm{J} = 12.38\,\mathrm{kJ}. \end{aligned}

2.3 吸放热量 QQ

根据第一定律

ΔU=Q+W.\Delta U = Q + W.

由于 ΔU=0\Delta U=0,可得

0=Q+W    Q=W.0 = Q + W \;\Longrightarrow\; Q = -\,W.

数值上:

Q=12.38kJ  =  12.38kJ.Q = -\,12.38\,\mathrm{kJ} \;=\; -12.38\,\mathrm{kJ}.

这表明系统在被压缩过程中放出热量(因为是等温、理想气体,内能不变,外界做正功给系统,系统必定向外放出同样大小的热量)。


2.4 熵变 ΔS\Delta S

熵是状态函数,因此无论过程可逆还是不可逆,只要初、末态相同,系统本身的熵变只取决于初态和终态。

对于 1 mol 理想气体,从 (P1,T1)(P_1,\,T_1)(P2,T2)(P_2,\,T_2) 的变化,常用的表达式是:

ΔS=nCVln ⁣(T2T1)  +  nRln ⁣(V2V1).\Delta S = nC_V \ln\!\bigl(\tfrac{T_2}{T_1}\bigr) \;+\; nR\,\ln\!\bigl(\tfrac{V_2}{V_1}\bigr).

而在本题中,温度保持不变 (T2=T1T_2 = T_1),故前半项为零,只需考虑体积比(或压强比):

ΔS=nRln ⁣(V2V1).\Delta S = nR\,\ln\!\bigl(\tfrac{V_2}{V_1}\bigr).

将数值代入(n=1n=1 mol,R=8.314J/(molK)R=8.314\,\mathrm{J/(mol\cdot K)}):

V2V1=4.12624.76    0.1667,ln ⁣(V2V1)=ln(0.1667)    1.792,ΔS=8.314×(1.792)    14.9J/(Kmol).\begin{aligned} \frac{V_2}{V_1} &= \frac{4.126}{24.76} \;\approx\; 0.1667, \\[6pt] \ln\!\bigl(\tfrac{V_2}{V_1}\bigr) &= \ln(0.1667) \;\approx\; -1.792, \\[6pt] \Delta S &= 8.314 \times (-1.792) \;\approx\; -14.9\,\mathrm{J/(K\cdot mol)}. \end{aligned}

因为本题 1 mol 气體,故可写成

ΔS    14.9J/K.\Delta S \;\approx\; -14.9\,\mathrm{J/K}.

可见在此压缩过程中,系统的熵下降ΔS<0\Delta S<0)。


2.5 Helmholtz 自由能变 ΔA\Delta A

定义:

A  =  U    TS,ΔA=ΔU    TΔS.A \;=\; U \;-\; T\,S, \quad \Delta A = \Delta U \;-\; T\,\Delta S.

由于 ΔU=0\Delta U=0,故

ΔA=TΔS.\Delta A = -\,T\,\Delta S.

本题中 T=298KT=298\,\mathrm{K}ΔS=14.9J/K\Delta S = -14.9\,\mathrm{J/K},因此

ΔA=298K  ×  (14.9J/K)    +4445J  =  +4.45kJ.\Delta A = -\,298\,\mathrm{K} \;\times\; (-14.9\,\mathrm{J/K}) \;\approx\; +4445\,\mathrm{J} \;=\; +4.45\,\mathrm{kJ}.

2.6 Gibbs 自由能变 ΔG\Delta G

定义:

G=HTS,ΔG=ΔHTΔS.G = H - T\,S, \quad \Delta G = \Delta H - T\,\Delta S.

同理,ΔH=0\Delta H=0,所以

ΔG=TΔS    +4.45kJ.\Delta G = -\,T\,\Delta S \;\approx\; +4.45\,\mathrm{kJ}.

从另一个常见公式也可看出:对理想气体在等温P1P_1 变化到 P2P_2

ΔG=nRTln ⁣(P2P1).\Delta G = nRT \,\ln\!\bigl(\tfrac{P_2}{P_1}\bigr).

这里 P2/P1=600/100=6P_2/P_1 = 600/100 = 6ln(6)1.7918\ln(6) \approx 1.7918

nRT=1mol×8.314J/(molK)×298K    2475.6J,nRT = 1\,\mathrm{mol} \times 8.314\,\mathrm{J/(mol\cdot K)} \times 298\,\mathrm{K} \;\approx\; 2475.6\,\mathrm{J},

所以

ΔG=2475.6J×1.7918    4435J  =  4.44kJ,\Delta G = 2475.6 \,\mathrm{J} \times 1.7918 \;\approx\; 4435\,\mathrm{J} \;=\; 4.44\,\mathrm{kJ},

与上面计算结果一致。


3. 各热力学量的数值汇总

以两位或三位有效数字为准,常见做法是:

  • WWQQ 以 kJ 为单位;
  • ΔS\Delta SJ/K\mathrm{J/K} 为单位;
  • ΔA,ΔG\Delta A, \Delta G 也以 kJ 为单位。

最终结果可整理如下(均取近似值):

  1. ΔU=0\Delta U = 0
  2. ΔH=0\Delta H = 0
  3. W+12.4kJW \approx +12.4\,\mathrm{kJ} (外界对系统做功)
  4. Q12.4kJQ \approx -12.4\,\mathrm{kJ} (系统放热)
  5. ΔS14.9J/K\Delta S \approx -14.9\,\mathrm{J/K}
  6. ΔA+4.45kJ\Delta A \approx +4.45\,\mathrm{kJ}
  7. ΔG+4.45kJ\Delta G \approx +4.45\,\mathrm{kJ}

4. 结果的物理含义简单说明

  • 内能、焓均不变:等温下,理想气体的分子平均平动动能(与温度成正比)没有变化。
  • 系统被压缩(W>0W>0),所以对系统做正功,而由于温度不变、ΔU=0\Delta U=0,系统必须向外放出同样多的热量 (Q<0Q<0)。
  • 熵减(ΔS<0\Delta S<0):气体压缩到更小体积,微观可用体积减少,系统无序度降低。
  • Helmholtz 自由能、Gibbs 自由能增大:在等温压缩下,体系“可做的最大非体积功”能力变强(从自由能的角度看,体系自发方向是“减小”自由能;这里是外界强行压缩而增加了体系自由能)。

Compartilhar esta Q&A