Диагонали четырёхугольника PQRS пересекаются в точке O. Известно, что PR перпендикулярно QS, PS параллельно QR, QR=91, OS=12, а радиус окружности, вписанной в треугольник ORS, равен 5. Найдите радиус окружности, вписанной в треугольник OPS.
Pensamento
Analyzing the quadrilateral
I’m thinking through quadrilateral PQRS with intersecting diagonals at O. Given conditions are: PR⊥QS, PS∥QR, QR=91, OS=12, and the inradius of △ORS is 5. The task is to find the inradius of △OPS.
Piecing together
I’m working through the given elements: PR⊥QS, PS∥QR, QR=91, OS=12, and the inradius of △ORS is 5. The goal is to find the inradius of △OPS.
Considering geometric implications
I’m gathering info on the shape possibilities of quadrilateral PQRS. With PS∥QR, it might be a trapezoid or isosceles trapezoid, leading to interesting geometric insights.
Applying geometric principles
I’m using the formula for the incircle radius of a triangle to relate areas and perimeters of △ORS and △OPS, considering their geometric properties and reciprocal relations.
Placing the quadrilateral
Hmm, I’m thinking about mapping quadrilateral PQRS on a coordinate plane, setting O at the origin, R on the x-axis, P on the negative x-axis, Q on the positive y-axis, and S on the negative y-axis.
Setting coordinates
Starting with O at (0,0) and R on the positive x-axis as (r,0). Considering Q at (0,q) and S at (0,−12) to satisfy OS=12.
Analyzing coordinates
I’m positioning R on the x-axis and P on the same line. Using QR length, I’m ensuring PS is parallel to QR.
Ensuring parallelism
I’m working through the parallelism of PS and QR by setting the ratio of their vectors equal. This leads to equations −xPxR=12q to verify.
Confirming parallelism
I’m verifying PS is parallel to QR by ensuring the vector ratio xPxR=−12q is accurate, consistent with the known lengths.
Calculating triangle dimensions
OK, let's determine the inradius of △ORS with vertices (0,0), (xR,0), and (0,−12). The sides are OR=xR, OS=12, and RS=xR2+144.
Calculating inradius
Taking a closer look at △ORS, which has an area of 6xR, a perimeter of xR+12+xR2+144, and a semiperimeter to find the inradius.
Solving for xR
Using the inradius formula for △ORS, I substituted the known values and tackled the equation to find xR, positioning R at (35,0).
Finding q
I’m solving for q by noting the length QR=91 and applying the distance formula to determine q=7056, confirming values for R and S.
Determining vector ratios
I’m working through parallel vectors to find P's coordinates by ensuring the ratio −xP35=−12−84, aiming to locate P and ultimately the inradius of △OPS.
Pinpointing P's coordinates
I set up the ratio −xP35=−12−84, which led to k=7. Calculating xP as −5, I confirmed P(−5,0).
Thought about радиус окружности в треугольниках por 1m 30s
Resposta
Разбор задачи
Дан четырёхугольник PQRS с пересекающимися в точке O диагоналями PR и QS, причём:
PR⊥QS.
PS∥QR.
QR=91.
OS=12.
Радиус вписанной окружности в △ORS равен 5.
Требуется найти радиус вписанной окружности в △OPS.
Шаг 1. Удобная система координат
Чтобы упростить вычисления, разместим точки в декартовой системе координат так, чтобы:
Точка O была в начале координат (0,0).
Диагональ QS шла вдоль вертикальной оси Oy, то есть Q имеет координаты (0,q), а S имеет координаты (0,s).
Диагональ PR шла вдоль горизонтальной оси Ox, то есть P имеет координаты (xP,0), а R — (xR,0).
Из условия OS=12 положим S=(0,−12) (чтобы длина OS действительно была 12).