紧算子商空间证明

Criado em: 5 de janeiro de 2025

Respondido usando O1 por Chat01

Pergunta

解答下面这个泛函分析的习题:
3.1.10 设 X\mathcal{X}BB 空间,AL(X)A \in \mathcal{L}(\mathcal{X})X0\mathcal{X}_0X\mathcal{X} 的闭子空间并使得 A(X0)X0 A(\mathcal{X}_0) \subseteq \mathcal{X}_0,求证:映射

T:[x][Ax]T: [x] \mapsto [Ax]

是商空间 X/X0\mathcal{X} / \mathcal{X}_0 上的紧算子。

Pensamento

Verifying well-definition

I’m checking the well-definition of TT on X/X0\mathcal{X}/\mathcal{X}_0 by ensuring [Ax]=[Ay][Ax] = [Ay] if xyx \equiv y in X/X0\mathcal{X}/\mathcal{X}_0.

Establishing compactness

I’m figuring out how TT, the induced operator, achieves compactness on X/X0\mathcal{X}/\mathcal{X}_0 by showing that any bounded sequence in X/X0\mathcal{X}/\mathcal{X}_0 has a convergent subsequence mapping under TT.

Connecting compactness

I’m thinking about how TT, if it factors through a finite-dimensional space or is a composition of quotient maps and injections, would be compact, as these conditions often imply compactness.

Analyzing operator conditions

I'm exploring the theorem where if AA is a bounded operator on a Banach space X\mathcal{X} and X0\mathcal{X}_0 is invariant under AA, then TT is compact.

Mapping compactness

I'm examining how the image of the unit ball in X/X0\mathcal{X}/\mathcal{X}_0 under TT is relatively compact, which aligns with the definition of a compact operator.

Contradicting the non-compact

I’m examining the scenario where TT is not compact by finding a bounded sequence in X\mathcal{X} whose TT-image lacks a convergent subsequence in the quotient space, contradicting the compactness of TT.

Clarifying assumption

I'm noting that assuming AA is a compact operator justifies that the induced operator TT on the quotient space is compact, as the theorem applies when AA is compact.

Concluding with final observations

I'm working through the idea that TT might have finite rank, especially if X0\mathcal{X}_0 is stable, or it could be zero, which is inherently compact.

Mapping the quotient

I'm curious about how TT can be represented as the composition of projection π\pi, operator AA, and map ss, with ss potentially not being continuous.

Focusing on convergence

I’m confirming that for any bounded sequence [xn][x_n] in the quotient, a representative xnx_n in X\mathcal{X} ensures [Axn][A x_n] has a convergent subsequence in the quotient space.

Focusing on convergence

I'm curious about ensuring a sequence (yn)(y_n) in X0\mathcal{X}_0 such that AxnAxmyn+ym\|A x_n - A x_m - y_n + y_m\| is small, leading to convergence to an element in X\mathcal{X}.

Laying out the options

I’m exploring various results to see when TT is compact, like when the dimension of X/X0\mathcal{X}/\mathcal{X}_0 is finite or considering partial isometries and their quotients.

Confirming compactness

I’m confirming that if TT is an operator on XX with YY as a closed TT-invariant subspace and TYT|_Y jointly compact, then the induced operator on X/YX/Y is compact.

Connecting the dots

I'm thinking through why the operator TT is compact by considering how a bounded sequence in X/YX/Y can be lifted to XX, ensuring the difference is in YY, and then analyzing TYT|_Y.

Connecting abstract concepts

I'm gathering info on how TT being a compact operator relates to X0\mathcal{X}_0 being closed and A(X0)X0A(\mathcal{X}_0) \subseteq \mathcal{X}_0, and the finite dimension or direct sum of the quotient.

Understanding compactness

I’m piecing together that TT is compact if the quotient space X/X0\mathcal{X}/\mathcal{X}_0 is finite-dimensional or the direct sum of the closure of the range, utilizing the properties of compact operators and bounded sequences.

Confirming assumptions

I’m thinking through the necessity of AA being a compact operator on XX to assert that TT is compact. This assumption is vital and might have been overlooked.

Clarifying assumptions

I'm digging into the crucial assumption that AA must be a compact operator on XX to conclude that TT is compact. This point appears to have been skipped over.

Filling in the gaps

I'm recognizing that AA needs to be a compact operator on XX to ensure TT is compact. This crucial condition might have been overlooked.

Determining compactness

I’m concluding that for TT to be a compact operator, AA must be compact on XX. This matches standard functional analysis notation and ensures the compactness condition is satisfied.

Piecing together assumptions

It's becoming clear that AA should be a compact operator on XX. This ensures TT is a compact operator, aligning with standard functional analysis notation.

Confirming compactness

I’m detailing how to show TT is a compact operator: take a bounded sequence [xn][x_n] in X/X0\mathcal{X}/\mathcal{X}_0, lift to a bounded sequence xnx_n in XX, and use AA being compact to find a convergent subsequence [Axn][Ax_n] in the quotient.

Revisiting the assumption

I’m noting that the question might implicitly assume dim(X/X0)\dim(X/X_0) is finite, ensuring TT is compact due to linear operator properties on a finite-dimensional space.

Analyzing compactness

I'm thinking about whether the dimension of X/X0X/X_0 has to be finite or countable for TT to be compact, and how the unit ball in the quotient space impacts compactness.

Reevaluating assumptions

I’m noting that An(X){0}A^n(\mathcal{X}) \to \{0\} for all xXx \in X seems overlooked, which could mean the closure is in X0\mathcal{X}_0, crucial for establishing TT's compactness.

Balancing bounded sequences

I’m piecing together how to lift a bounded sequence in the quotient to XX, ensuring the differences lie in X0\mathcal{X}_0, to demonstrate TT’s compactness.

Laying out the options

I’m considering showing that TT is "strictly singular," which involves analyzing how a bounded sequence in the quotient can be lifted to XX and ensuring A(xn)A(x_n) differs by elements in X0\mathcal{X}_0 to achieve convergence.

Examining operator behavior

I’m analyzing how TT might be compact if AA has a spectral radius of 0, using principles like quasinilpotency and the converging norm sequence limnAn=0\lim_{n \to \infty} \|A^n\| = 0.

Confirming operator traits

I concur with the notion that TT is compact when AA is compact on XX, given the standard approach of analyzing bounded sequences and using the property that A(X0)X0A(\mathcal{X}_0) \subset \mathcal{X}_0.

Confirming compactness

I’m verifying TT is compact by analyzing a bounded sequence [xn][x_n] in X/X0\mathcal{X}/\mathcal{X}_0, ensuring AA being compact leads to a convergent subsequence [Axn][Ax_n].

Thought about compact operator in quotient space,持续 44 秒

Resposta

下面给出一道比较常见的解法思路。需要提醒的是,这道题通常出现在“已知 AA 是紧算子”或者“X/X0\mathcal{X}/\mathcal{X}_0 维数有限”这类背景之下;若题目本身并未显式说明,还请读者结合所在章节的上下文加以确认。以下证明过程最常见的场景是:AAX\mathcal{X} 上是紧的,从而诱导到商空间的算子也是紧的。若题目或教材另外有“X0\mathcal{X}_0 的余维数(即 dim(X/X0)\dim(\mathcal{X}/\mathcal{X}_0)) 有限”之类的假设,那么算子在有限维空间上也自动是紧的。总之,大部分教材中,这道题的隐含前提是“AA 在某种意义下能保证商空间上的算子是紧的”。下面按“AA 为紧算子”来给出证明。


题目回顾

题目
X\mathcal{X} 是 Banach 空间,AL(X)A \in \mathcal{L}(\mathcal{X})(即 AA 为有界线性算子),X0\mathcal{X}_0X\mathcal{X} 的闭子空间并且满足 A(X0)X0 A(\mathcal{X}_0) \subseteq \mathcal{X}_0。在商空间 X/X0\mathcal{X}/\mathcal{X}_0 上定义映射

T:[x]    [Ax]. T: [x] \;\mapsto\; [Ax].

证明:TTX/X0\mathcal{X}/\mathcal{X}_0 上的一个紧算子。

这里 [x][x] 表示 xXx \in \mathcal{X} 在商空间 X/X0\mathcal{X}/\mathcal{X}_0 中的等价类。因为 A(X0)X0A(\mathcal{X}_0) \subseteq \mathcal{X}_0,可验证 TT 确实是良定(well-defined) 的。


思路概要

要证明算子 TT 是紧的,按“紧算子”的常用判定方法之一,即“看它对有界序列的像是否有收敛子列”来进行:

  1. 紧算子的判定标准
    在 Banach 空间(更一般地说是赋范线性空间) 中,一个线性算子 KK 是紧的,当且仅当它能把单位球(或任意有界集)的像映到的集合在该空间中是相对紧的。等价地说,若 (yn)(y_n)ynM\|y_n\|\le M 的有界序列,则 (Kyn)(K y_n) 总能找出收敛子列。

  2. 本题的核心做法

    • 在商空间 X/X0\mathcal{X}/\mathcal{X}_0 里取一个有界序列 ([xn])\bigl([x_n]\bigr)
    • 选取代表元 xnXx_n \in \mathcal{X}(可令 xn\|x_n\| 一直受某个常数 MM 控制)。
    • 用到“AAX\mathcal{X} 上是紧的”这一事实:(xn)(x_n) 有界     \implies (Axn)(A x_n)X\mathcal{X} 里有收敛子列。
    • 进而得到 ([Axn])\bigl([A x_n]\bigr) 在商空间 X/X0\mathcal{X}/\mathcal{X}_0 中也能找到收敛子列(因为在上面取等价类后,极限自然映射下去也是收敛的)。
    • 由此可得出 TT 是紧算子。

下面给出比较完整的细节。


详细证明

1. TT 的良定性 (well-defined)

先要核实:若 [x]=[y][x] = [y],即 xyX0x - y \in \mathcal{X}_0,要保证 [Ax]=[Ay][Ax] = [Ay]

  • 因为 xyX0x-y \in \mathcal{X}_0,再利用 A(X0)X0A(\mathcal{X}_0) \subseteq \mathcal{X}_0,可得 A(xy)    A(X0)    X0. A(x - y) \;\in\; A(\mathcal{X}_0) \;\subseteq\; \mathcal{X}_0.
  • 这等价于 AxAyX0A x - A y \in \mathcal{X}_0,从而 [Ax]=[Ay][A x] = [A y] 在商空间中是同一个等价类。
    TT 定义无歧义。

2. 线性与有界性

  • 线性算子:从定义就可看出 T([αx+βy])=[A(αx+βy)]=α[Ax]+β[Ay]T([\alpha x + \beta y]) = [A(\alpha x + \beta y)] = \alpha [Ax] + \beta [Ay]
  • 有界性:可由商空间的范数定义(以及 AAX\mathcal{X} 上的有界性) 推出,通常不难验证。

3. TT 的紧性

这是本题的重点。我们要验证:对任意有界序列 ([xn])\bigl([x_n]\bigr) X/X0\subset \mathcal{X}/\mathcal{X}_0,其像 (T([xn]))=([Axn])\bigl(T([x_n])\bigr) = \bigl([A x_n]\bigr)X/X0\mathcal{X}/\mathcal{X}_0 中有收敛子列

  • 第一步:挑选代表元,使其在 X\mathcal{X} 中有界。
    给定 ([xn])\bigl([x_n]\bigr) 是有界序列,意味着在商空间范数下

    [xn]  =  infzX0xn+z    M \|\, [x_n] \|\;=\;\inf_{z \in \mathcal{X}_0} \|\,x_n + z\|\;\le\; M

    对某个 M>0M>0。通常做法是:从每个等价类 [xn][x_n] 中“随意”挑一个代表元(比如就选 xnx_n 本身),并“适当地”做修正,使得最终得到的一列 (xn)X(x_n)\subset \mathcal{X} 满足 xn\|x_n\| 一直小于等于某个固定常数(这在很多教科书的命题中是可行的;若需要,可再利用 X0\mathcal{X}_0 的闭性、以及把 xnx_n 替换为距离 X0\mathcal{X}_0 最近的那个点等技巧)。总之可保证

    xn    C,n. \|x_n\|\;\le\;C, \quad \forall n.
  • 第二步:利用 AAX\mathcal{X} 上的紧性,得到 (Axn)(A x_n)X\mathcal{X} 中有收敛子列(这是最关键的地方!)
    由于 (xn)(x_n)X\mathcal{X} 中的有界序列,而 AA 又是紧算子,按照紧算子的定义(或常见等价刻画),可断言:

    (Axn)(A x_n)X\mathcal{X} 中存在收敛子列 (Axnk)(A x_{n_k})
    记其极限为某个 uXu \in \mathcal{X},即

    Axnk  k  u在 X的范数下收敛。 A x_{n_k} \;\xrightarrow[k\to\infty]{}\; u \quad\text{在 }\mathcal{X}\text{的范数下收敛。}
  • 第三步:推断 ([Axnk])\bigl([A x_{n_k}]\bigr) 在商空间 X/X0\mathcal{X}/\mathcal{X}_0 中收敛
    在商空间里,([Axnk])\bigl([A x_{n_k}]\bigr) 的极限自然是 [u][u] (即把 uu 视作一个等价类)。因为如果

    AxnkuX    0, \|A x_{n_k} - u\|_{\mathcal{X}} \;\to\;0,

    那么在商空间的范数(或者说“半范数”)下也有

    [Axnk][u]X/X0  =  infzX0Axnku+z    Axnku  k  0. \bigl\|\, [A x_{n_k}] - [u] \bigr\|_{\mathcal{X}/\mathcal{X}_0} \;=\;\inf_{z \in \mathcal{X}_0} \|A x_{n_k} - u + z\| \;\le\;\|A x_{n_k} - u\| \;\xrightarrow[k\to\infty]{}\; 0.

    这就说明 [Axnk][A x_{n_k}]X/X0\mathcal{X}/\mathcal{X}_0 中收敛到 [u][u]

由此可见,([Axn])\bigl([A x_n]\bigr) 在商空间中总能挑出收敛子列,因此 TT 正是一个紧算子。


补充:若 dim(X/X0)\dim(\mathcal{X}/\mathcal{X}_0) 有限

另一个常见的情形是:如果已知商空间 X/X0\mathcal{X}/\mathcal{X}_0 本身是有限维的,那么在有限维空间上一切线性算子都是紧算子(因为在有限维空间中,有界集合的闭包本身就是紧的)。这时连 AA 是否紧都不用假设,TT 也会自动紧。


小结

  • 最常见的前提
    这道题往往在“AA 为紧算子”或“X/X0\mathcal{X}/\mathcal{X}_0 为有限维”这两种背景下出现。若题目省略了这层说明,则要去看教材上下文,通常会在前后文或相关章节里给出这些隐含条件。
  • 证明核心
    “从商空间里一个有界序列提代表元到 X\mathcal{X} 中(同样有界);由于 AA 紧,则在 X\mathcal{X} 中像有收敛子列,进而在商空间中也收敛。”

这正是紧算子在商空间上的传递(或在有限维空间上的自动紧性) 的一个经典例子。至此,题目得证。

Compartilhar esta Q&A