Green's Theorem Line Integral
Criado em: 19 de dezembro de 2024
Criado em: 19 de dezembro de 2024
计算绿定理
济观问题时,采用绿定理将线积分转化为区域D内的双重积分。计算∂Q/∂x和∂P/∂y后,得到了3x^2 + 3y^2 + 1。
转换坐标系
将单位圆内的积分转为极坐标,积分表达式为3r^2 + 1,通过对r进行积分和对θ进行积分,得到了最终结果5/4。
思考 花的時間為 幾秒
To evaluate the line integral where and , and is the unit circle traversed counter-clockwise, we can use Green's Theorem.
Green's Theorem states:
where is the region enclosed by .
Compute the Partial Derivatives:
Thus,
Set Up the Double Integral:
The region is the unit disk . Switching to polar coordinates where and , the integrand becomes:
The area element in polar coordinates is .
So, the integral becomes:
Evaluate the Integral:
Integrate with respect to :
Integrate with respect to :
Final Answer:
Answer:
After simplifying, the integral is five-halves times π. Thus,
∮C P dx + Q dy = (5⁄2) π