Question

IMG_20251224_160125.jpgIMG_20251224_160125.jpg

Реши пожалуйста

Python

python
from PIL import Image, ImageEnhance img = Image.open('/mnt/data/IMG_20251224_160125.jpg') img.size (2797, 1771)

Python

python
import matplotlib.pyplot as plt, numpy as np, PIL # rotate 90 deg clockwise? image seems sideways. rot = img.rotate(90, expand=True) rot.size (1771, 2797)

Python

python
# crop central area with text for readability import numpy as np arr=np.array(rot) arr.shape (2797, 1771, 3)

Python

python
# Let's display quickly plt.figure(figsize=(10,14)) plt.imshow(rot) plt.axis('off') plt.show()

Python

python
rot2 = img.rotate(-90, expand=True) # rotate 90 counterclockwise plt.figure(figsize=(10,14)) plt.imshow(rot2) plt.axis('off') plt.show()

Python

python
import numpy as np, matplotlib.pyplot as plt # crop region with problem text (roughly middle top) w,h=rot2.size # crop around text lines crop = rot2.crop((150, 300, w-150, 900)) # enhance contrast/sharpness enh=ImageEnhance.Contrast(crop).enhance(2.5) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(12,6)) plt.imshow(enh) plt.axis('off') plt.show()

Python

python
crop = rot2.crop((80, 420, w-80, 1150)) enh=ImageEnhance.Contrast(crop).enhance(3.0) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(12,8)) plt.imshow(enh) plt.axis('off') plt.show()

Thought

crop = rot2.crop((80, 420, w-80, 1150)) enh=ImageEnhance.Contrast(crop).enhance(3.0) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(12,8)) plt.imshow(enh) plt.axis('off') plt.show()

text
![](https://files.chat01.ai/python-generations/files/file-D7HwVxtwngKEC9wFD7ETxU) Thought for 1m 28s

Answer

Чтобы стержень висел горизонтально, нить должна быть закреплена в центре масс системы (стержень + два шарика).

Пусть точка подвеса находится на расстоянии x от шарика m₁ (от его конца стержня). Тогда до шарика m₂ расстояние 30 − x, а центр стержня (его масса M) находится на отметке 15 см, значит до него расстояние x − 15 (точка подвеса будет правее середины, потому что справа тяжелее).

Условие равновесия моментов относительно точки подвеса:

m1x+M(x15)=m2(30x)m_1\cdot x + M\cdot (x-15)= m_2\cdot(30-x)

Подставим m1=10m_1=10, M=20M=20, m2=20m_2=20:

10x+20(x15)=20(30x)10x + 20(x-15)=20(30-x) 10x+20x300=60020x10x+20x-300 = 600-20x 50x=900x=1850x = 900 \Rightarrow x = 18

Ответ: 18 см.

Question

IMG_20251224_160627.jpgIMG_20251224_160627.jpg

Реши пожалуйста

Python

python
from PIL import Image, ImageOps img=Image.open('/mnt/data/IMG_20251224_160627.jpg') img.size (2523, 1788)

Python

python
import matplotlib.pyplot as plt, numpy as np img_rot=img.rotate(90, expand=True) # rotate to upright? plt.figure(figsize=(10,7)) plt.imshow(img_rot) plt.axis('off') plt.show()

Python

python
img_rot=img.rotate(270, expand=True) plt.figure(figsize=(10,7)) plt.imshow(img_rot) plt.axis('off') plt.show()

Python

python
import numpy as np, matplotlib.pyplot as plt img_rot=img.rotate(270, expand=True) # crop around diagram crop=img_rot.crop((600,420,1900,950)) plt.figure(figsize=(12,4)) plt.imshow(crop) plt.axis('off') plt.show()

Python

python
crop=img_rot.crop((700,540,1700,820)) plt.figure(figsize=(12,4)) plt.imshow(crop) plt.axis('off') plt.show()

Python

python
import matplotlib.pyplot as plt small=img_rot.resize((800,600)) plt.figure(figsize=(8,6)) plt.imshow(small) plt.axis('off') plt.show()

Python

python
w,h=img_rot.size crop=img_rot.crop((500,900,1300,1450)) plt.figure(figsize=(12,6)) plt.imshow(crop) plt.axis('off') plt.show()

Python

python
import numpy as np arr=np.array(crop) # convert to grayscale gray=arr.mean(axis=2) # focus on region of ruler y between maybe 160-260 in crop h,w=gray.shape y1,y2=160,260 region=gray[y1:y2,:] # compute column darkness: lower values means dark col_mean=region.mean(axis=0) # find local minima below threshold threshold=np.percentile(col_mean,5) mins=np.where(col_mean<threshold)[0] # group into clusters clusters=[] current=[] for x in mins: if not current or x==current[-1]+1: current.append(x) else: clusters.append(current) current=[x] if current: clusters.append(current) # get center of each cluster centers=[int(np (8, [334, 362, 374, 385, 388, 641, 678, 689])

Python

python
y1,y2=210,250 region=gray[y1:y2,:] col_mean=region.mean(axis=0) threshold=np.percentile(col_mean,3) # darker mins=np.where(col_mean<threshold)[0] clusters=[] current=[] for x in mins: if not current or x==current[-1]+1: current.append(x) else: clusters.append(current); current=[x] if current: clusters.append(current) centers=[int(np.mean(c)) for c in clusters] centers, len(centers) ([282, 334, 641, 679, 695], 5)

Python

python
import scipy.ndimage as ndi, numpy as np, math, statistics # compute x gradient absolute grad=np.abs(np.diff(region, axis=1)) # sum over y score=grad.sum(axis=0) # find peaks in score # smooth score_s=ndi.gaussian_filter1d(score, sigma=2) # find peaks with prominence from scipy.signal import find_peaks peaks,_=find_peaks(score_s, prominence=np.percentile(score_s,95), distance=30) peaks, len(peaks), score_s.max() (array([282, 330, 643]), 3, 1270.8451128188112)

Python

python
peaks,_=find_peaks(score_s, prominence=np.percentile(score_s,85), distance=40) peaks, len(peaks) (array([282, 330, 413, 643]), 4)

Python

python
# enlarge crop for human inspection big=crop.resize((crop.size[0]*2, crop.size[1]*2)) plt.figure(figsize=(14,6)) plt.imshow(big) plt.axis('off') plt.show()

Python

python
gray=np.array(crop.convert('L')) # choose row y around 235 y=235 row=gray[y,:] # threshold dark=np.where(row<80)[0] # cluster contiguous clusters=[] cur=[] for x in dark: if not cur or x==cur[-1]+1: cur.append(x) else: clusters.append(cur); cur=[x] if cur: clusters.append(cur) # compute cluster centers and widths centers=[int(np.mean(c)) for c in clusters] widths=[len(c) for c in clusters] list(zip(centers,widths))[:20], len(centers) ([(332, 1)], 1)

Python

python
# within ruler height approximate y from 180-270, compute dark count per x ys=range(195,260) mask=(gray[195:260,:]<120).astype(int) col=mask.sum(axis=0) # peaks where col> threshold peaks=np.where(col>30)[0] # cluster clusters=[]; cur=[] for x in peaks: if not cur or x==cur[-1]+1: cur.append(x) else: clusters.append(cur); cur=[x] if cur: clusters.append(cur) centers=[int(np.mean(c)) for c in clusters] widths=[len(c) for c in clusters] len(centers), list(zip(centers,widths))[:15] (1, [(333, 6)])

Python

python
import matplotlib.pyplot as plt, numpy as np # plot row average across ruler height for more robust region=gray[185:270,:] col_mean=region.mean(axis=0) plt.figure(figsize=(12,3)) plt.plot(col_mean) plt.ylim(0,255) plt.show()

Python

python
# take narrow strip at top of ruler border near y=170-180 strip=gray[165:195,:] col_min=strip.min(axis=0) # minimum pixel value in strip per column plt.figure(figsize=(12,3)) plt.plot(col_min) plt.ylim(0,255) plt.show()

Python

python
from scipy.signal import find_peaks vals=255-col_min # invert so dips become peaks vals_s=ndi.gaussian_filter1d(vals, sigma=1) peaks,_=find_peaks(vals_s, height=40, distance=20) peaks, len(peaks) (array([335, 361, 388]), 3)

Python

python
strip=gray[190:270,:] col_min=strip.min(axis=0) vals=255-col_min vals_s=ndi.gaussian_filter1d(vals, sigma=1) peaks,_=find_peaks(vals_s, height=60, distance=40) peaks, len(peaks) (array([333, 384, 633, 678]), 4)

Python

python
peaks,_=find_peaks(vals_s, height=15, distance=40) peaks, len(peaks), peaks[:20] (array([251, 291, 333, 384, 426, 488, 542, 633, 678]), 9, array([251, 291, 333, 384, 426, 488, 542, 633, 678]))

Python

python
big=crop.resize((crop.size[0]*4, crop.size[1]*4)) plt.figure(figsize=(16,8)) plt.imshow(big) plt.axis('off') plt.show()

Python

python
gray=np.array(crop.convert('L')) # define region containing ruler (y bounds) by trial y_top,y_bot=160,270 region=gray[y_top:y_bot,:] col_min=region.min(axis=0) # min in column inv=255-col_min inv_s=ndi.gaussian_filter1d(inv, sigma=1.5) # find peaks peaks,props=find_peaks(inv_s, height=30, distance=40) peaks, props['peak_heights'][:10], len(peaks) (array([290, 362, 405, 678]), array([ 49., 250., 51., 253.]), 4)

Python

python
plt.figure(figsize=(12,3)) plt.plot(inv_s) plt.scatter(peaks, inv_s[peaks], color='red') plt.ylim(0,260) plt.show()

Python

python
peaks,_=find_peaks(inv_s, height=35, distance=15) len(peaks), peaks[:20] (11, array([271, 290, 318, 334, 362, 388, 405, 427, 641, 678, 705]))

Python

python
import matplotlib.pyplot as plt plt.figure(figsize=(12,4)) plt.imshow(crop) for x in peaks: plt.axvline(x=x, color='red', linewidth=1) plt.axis('off') plt.show()

Python

python
gray=np.array(crop.convert('L')) row_mean=gray.mean(axis=1) # find y range where mean significantly less than background import numpy as np th=np.percentile(row_mean,10) ys=np.where(row_mean<th)[0] ys.min(), ys.max(), th (294, 357, 230.035375)

Python

python
y_top,y_bot=300,360 region=gray[y_top:y_bot,:] col_min=region.min(axis=0) inv=255-col_min inv_s=ndi.gaussian_filter1d(inv, sigma=1) peaks,_=find_peaks(inv_s, height=40, distance=30) peaks, len(peaks) (array([262, 341, 376, 418, 497, 551, 645]), 7)

Python

python
plt.figure(figsize=(12,4)) plt.imshow(crop) for x in peaks: plt.axvline(x=x, color='red', linewidth=1) plt.axis('off') plt.show()

Python

python
peaks,_=find_peaks(inv_s, height=20, distance=30) peaks, len(peaks) (array([192, 262, 341, 376, 418, 497, 551, 645, 704]), 9)

Python

python
ruler=crop.crop((240,260,760,410)) # focus plt.figure(figsize=(12,3)) plt.imshow(ruler) plt.axis('off') plt.show()

Python

python
rgray=np.array(ruler.convert('L')) # focus on interior excluding top/bottom border maybe y 50-110 region=rgray[30:120,:] darkness=255-region col_score=darkness.sum(axis=0) col_s=ndi.gaussian_filter1d(col_score, sigma=1) # find peaks with distance around segment width ~? use 50 maybe peaks,_=find_peaks(col_s, prominence=np.percentile(col_s,85), distance=40) peaks, len(peaks) (array([ 30, 92, 153, 214, 275, 337, 398, 457]), 8)

Python

python
# get indices of highest scores top=np.argsort(col_s)[-20:] sorted(top) [29, 30, 31, 91, 92, 93, 153, 154, 214, 215, 275, 276, 336, 337, 338, 397, 398, 399, 400, 457]

Python

python
region=rgray[:, :] darkness=255-region col_score=darkness.sum(axis=0) col_s=ndi.gaussian_filter1d(col_score, sigma=1) peaks,_=find_peaks(col_s, prominence=np.percentile(col_s,85), distance=40) peaks, len(peaks), ruler.size (array([ 30, 92, 153, 214, 275, 337, 399, 457]), 8, (520, 150))

Python

python
col_s[-10:], col_s.max(), np.argmax(col_s) (array([15, 26, 18, 6, 2, 5, 11, 16, 14, 14], dtype=uint64), 21377, 92)

Python

python
col_min=rgray.min(axis=0) min_x=np.argmin(col_min) col_min[min_x], min_x (0, 0)

Python

python
xs=np.where(col_min<50)[0] xs[:20], xs[-20:], len(xs) (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), array([448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467]), 468)

Python

python
th=80 dark_frac=(rgray<th).mean(axis=0) # find columns where dark_frac > 0.4 xs=np.where(dark_frac>0.3)[0] # cluster clusters=[];cur=[] for x in xs: if not cur or x==cur[-1]+1: cur.append(x) else: clusters.append(cur);cur=[x] if cur: clusters.append(cur) centers=[int(np.mean(c)) for c in clusters] widths=[len(c) for c in clusters] len(centers), list(zip(centers,widths))[:15], centers[-5:] (8, [(30, 4), (92, 5), (153, 4), (214, 4), (275, 4), (336, 4), (398, 4), (457, 3)], [214, 275, 336, 398, 457])

Python

python
plt.figure(figsize=(12,3)) plt.imshow(ruler) for x in centers: plt.axvline(x=x, color='red', linewidth=1) plt.axis('off') plt.show()

Python

python
right=ruler.crop((480,0,520,150)) plt.figure(figsize=(3,3)) plt.imshow(right.resize((160,600))) plt.axis('off') plt.show()

Python

python
col_mean=rgray.mean(axis=0) # find columns with mean < 245 (background white ~255) cols=np.where(col_mean<245)[0] cols.min(), cols.max(), ruler.size (0, 468, (520, 150))

Python

python
gray_full=np.array(crop.convert('L')) col_mean=gray_full.mean(axis=0) cols=np.where(col_mean<250)[0] # capture ruler and arrows perhaps cols.min(), cols.max(), crop.size (209, 707, (800, 550))

Python

python
row_mean=gray_full.mean(axis=1) rows=np.where(row_mean<250)[0] rows.min(), rows.max() (147, 549)

Python

python
th=np.percentile(row_mean,5) rows=np.where(row_mean<th)[0] th, rows.min(), rows.max(), len(rows) (228.6159375, 294, 357, 28)

Python

python
r_region=gray_full[294:357,209:707] # compute dark fraction per column dark_frac=(r_region<100).mean(axis=0) # columns with dark_frac>0.2 indicate vertical lines xs=np.where(dark_frac>0.2)[0] clusters=[];cur=[] for x in xs: if not cur or x==cur[-1]+1: cur.append(x) else: clusters.append(cur);cur=[x] if cur: clusters.append(cur) centers=[int(np.mean(c)) for c in clusters] widths=[len(c) for c in clusters] len(centers), list(zip(centers,widths))[:20] (9, [(3, 5), (61, 6), (123, 5), (184, 5), (245, 5), (306, 6), (368, 7), (429, 6), (487, 6)])

Thought

Identifying vertical line positions and boundary segments

We’ve detected 9 vertical line clusters, which likely mark both ends and 7 internal boundaries, giving us 8 segments. The left end is at x=3 and the right at x=487; segment width is roughly 60.5 px. The consecutive center distances are mostly uniform, confirming our count is accurate. Now, we’ll identify which boundary corresponds to F1 and F2 by finding the red arrow's position and determining their x coordinates relative to the ruler.

Thought for 9m 17s

Answer

Чтобы линейка оставалась в покое, нужно выполнить два условия:

  1. Сумма сил = 0
    Сейчас обе силы сонаправлены: F1=5 НF_1=5\text{ Н} и F2=1 НF_2=1\text{ Н}.
    Значит дополнительная сила должна быть противоположной и равной их сумме:
F3=F1+F2=6 НF_3 = F_1+F_2 = 6\text{ Н}

(направлена против F1F_1 и F2F_2).

  1. Сумма моментов = 0
    По рисунку силы приложены в делениях по 6 см:
  • F1F_1 стоит на границе после 2 делений x1=26=12 см\Rightarrow x_1=2\cdot 6=12\text{ см}
  • F2F_2 стоит на границе после 7 делений x2=76=42 см\Rightarrow x_2=7\cdot 6=42\text{ см}

Берём моменты относительно левого конца:

F1x1+F2x2=F3x3F_1 x_1 + F_2 x_2 = F_3 x_3 512+142=6x360+42=6x3x3=17 см5\cdot 12 + 1\cdot 42 = 6\cdot x_3 \Rightarrow 60+42=6x_3 \Rightarrow x_3=17\text{ см}

Ответ:

  • дополнительная сила: 6 Н (в противоположную сторону)
  • приложить на расстоянии 17,0 см от левого конца.

Question

IMG_20251224_162226.jpgIMG_20251224_162226.jpg

Реши пожалуйста

Python

python
from PIL import Image, ImageEnhance img=Image.open('/mnt/data/IMG_20251224_162226.jpg') img.size (2214, 1799)

Python

python
import matplotlib.pyplot as plt, numpy as np img_rot=img.rotate(90, expand=True) img_rot.size (1799, 2214)

Python

python
plt.figure(figsize=(10,12)) plt.imshow(img_rot) plt.axis('off') plt.show()

Python

python
img_rot2=img_rot.rotate(180, expand=True) plt.figure(figsize=(10,12)) plt.imshow(img_rot2) plt.axis('off') plt.show()

Python

python
import numpy as np, matplotlib.pyplot as plt import PIL.ImageOps as ops crop=img_rot2.crop((450,650,1350,1250)) # rough region plt.figure(figsize=(10,6)) plt.imshow(crop) plt.axis('off') plt.show()

Python

python
# enlarge and show grid with markers zoom=crop.resize((crop.size[0]*2,crop.size[1]*2)) plt.figure(figsize=(12,7)) plt.imshow(zoom) plt.axis('off') plt.show()

Python

python
import numpy as np, PIL.Image as Image ruler = zoom.crop((0,250,1600,750)) # region around ruler arr=np.array(ruler.convert('L')) # find y range with ruler: pixels darker (border). # Sum dark pixels per row. dark = arr<80 row_sum = dark.sum(axis=1) # rows with high dark count ys = np.where(row_sum>100)[0] ys[:10], ys[-10:], len(ys) (array([], dtype=int64), array([], dtype=int64), 0)

Python

python
arr.min(), arr.max(), np.quantile(arr, [0.01,0.05,0.1,0.2]) (0, 255, array([166., 255., 255., 255.]))

Python

python
dark=arr<200 row_sum=dark.sum(axis=1) ys=np.where(row_sum>200)[0] ys[:20], ys[-20:], len(ys), row_sum.max() (array([], dtype=int64), array([], dtype=int64), 0, 57)

Python

python
ys=np.where(row_sum>30)[0] ys[:10], ys[-10:], len(ys), row_sum.max() (array([24, 25, 26, 27, 28, 29, 30, 31, 32, 33]), array([315, 316, 317, 318, 319, 320, 334, 335, 336, 337]), 59, 57)

Python

python
plt.figure(figsize=(12,4)) plt.imshow(ruler) plt.axis('on') plt.show()

Python

python
ruler2 = zoom.crop((0,550,1600,1150)) plt.figure(figsize=(12,4)) plt.imshow(ruler2) plt.axis('on') plt.show()

Python

python
region = ruler2.crop((550,200,1550,370)) arr=np.array(region.convert('L')) # detect dark pixels for borders, threshold 120 maybe dark=arr<120 col_sum=dark.sum(axis=0) # find peaks import scipy.signal as signal, numpy as np peaks,_=signal.find_peaks(col_sum, height=30, distance=20) peaks[:20], len(peaks), col_sum.max() (array([100, 202, 314, 419, 527, 637, 745, 853, 955]), 9, 141)

Python

python
# Use region2 bigger containing arrow and ruler big = ruler2.crop((550,0,1550,500)) # includes arrow F1 and F2 arr=np.array(big) # find red pixels: high R low G,B R,G,B=arr[:,:,0],arr[:,:,1],arr[:,:,2] red_mask=(R>150) & (G<120) & (B<120) coords=np.column_stack(np.where(red_mask)) coords.shape (2924, 2)

Python

python
# Separate arrow1 (up) and arrow2 (down) by x clustering xs=coords[:,1] # k-means 2 clusters from sklearn.cluster import KMeans km=KMeans(n_clusters=2, random_state=0).fit(xs.reshape(-1,1)) centers=sorted(km.cluster_centers_.flatten()) centers [311.1820263308533, 852.3041631265935]

Python

python
centers_raw=km.cluster_centers_.flatten() # map label->center for lab in [0,1]: sel=coords[labels==lab] print(lab, centers_raw[lab], sel[:,0].min(), sel[:,0].max(), sel.shape[0])

Thought

Determining F1 and F2 line indices

I’ve identified the y-ranges for F1 and F2: F1 at y=0-225 and F2 at y=339-429. This means F1 is around x=311 and F2 is around x=852. I need to match these x-values to vertical line peaks from the previously defined crop region. F1’s x-coordinate aligns with the third vertical line (index 2).

Balancing forces and calculating F3

F2 at x=852 aligns with the peak at 853, representing the 8th line. Since we have 8 segments, F2's boundary is 42 cm from the left. With F1 at 12 cm, F2 is at 42 cm. To achieve equilibrium, I need to calculate F3's force and location—F3 should be -4 N (downward) to cancel the net force. I’ll consider the moment conditions.

Calculating equilibrium and checking signs

I’m using a moment equation to solve for F3. First, I’m calculating moments around the left end: F1 provides a +512 moment, F2 gives a -142 moment, and F3 gives a -4*x3 moment. To balance, I set the sum of moments equal to 0 and solve for x3, which comes out to 4.5 cm. So, F3 is placed correctly. However, I’m double-checking the net force—right now we have 4 N upward, so F3 will need to be 4 N downward to balance things out.

Thought for 2m 47s

Answer

Здесь силы противоположны: F1=5 НF_1=5\text{ Н} вверх, F2=1 НF_2=1\text{ Н} вниз.

1) Условие равновесия по силам

F1F2F3=0F3=F1F2=51=4 НF_1 - F_2 - F_3 = 0 \Rightarrow F_3 = F_1 - F_2 = 5-1=4\text{ Н}

Дополнительная сила должна быть вниз.

2) Условие равновесия по моментам (относительно левого конца)

По рисунку деление = 6 см, всего 8 частей.

  • F1F_1 приложена на границе после 2 частей: x1=26=12 смx_1=2\cdot6=12\text{ см}
  • F2F_2 на границе после 7 частей: x2=76=42 смx_2=7\cdot6=42\text{ см}

Моменты (вверх — “плюс”, вниз — “минус”):

5121424x=05\cdot 12 - 1\cdot 42 - 4\cdot x = 0 6042=4x18=4xx=4.5 см60-42 = 4x \Rightarrow 18=4x \Rightarrow x=4.5\text{ см}

Ответ:

  • дополнительная сила: 4 Н
  • приложить на расстоянии 4,5 см от левого конца (вниз).

Question

IMG_20251224_163347.jpgIMG_20251224_163347.jpg

Реши пожалуйста

Python

python
from PIL import Image, ImageOps img=Image.open('/mnt/data/IMG_20251224_163347.jpg') img.size (2446, 1805)

Python

python
import matplotlib.pyplot as plt, numpy as np, PIL plt.figure(figsize=(10,7)) plt.imshow(img) plt.axis('off') plt.show()

Python

python
rot=img.rotate(90, expand=True) plt.figure(figsize=(12,8)) plt.imshow(rot) plt.axis('off') plt.show()

Python

python
rot2=rot.rotate(180, expand=True) plt.figure(figsize=(12,8)) plt.imshow(rot2) plt.axis('off') plt.show()

Python

python
import numpy as np arr=np.array(rot2) h,w=arr.shape[:2] h,w (2446, 1805)

Python

python
# crop central region crop=rot2.crop((100, 200, 1700, 1800)) plt.figure(figsize=(12,8)) plt.imshow(crop) plt.axis('off') plt.show()

Python

python
# zoom text area around mass statement text_crop=rot2.crop((120, 250, 1650, 550)) plt.figure(figsize=(12,4)) plt.imshow(text_crop) plt.axis('off') plt.show()

Python

python
text_crop2=rot2.crop((120, 350, 1700, 720)) plt.figure(figsize=(12,4)) plt.imshow(text_crop2) plt.axis('off') plt.show()

Python

python
L=100; l=25; M=1; r=2 x_s=L-l # solve for a import sympy as sp a=sp.symbols('a', real=True) sol=sp.solve(sp.Eq(r*(L-a/2-x_s), x_s-L/2), a) sol [25.0000000000000]

Python

python
a=25 x_cm=(M*L/2 + r*M*(a/2) + r*M*(L-a/2))/(M+2*r*M) x_cm 50.0

Thought

Verifying center of mass for symmetry

I find that the center of mass (CM) calculation matches with symmetry. After trying to compute the moments for the two cubes and the beam, I realized my earlier total was incorrect. By correctly calculating with the moments, I confirm that the CM is indeed at 50 cm, as expected, when the cubes are symmetrically placed.

Reconsidering support shift

After reevaluating, I realize the cubes are identical and symmetrically placed. The system is symmetric, so the center of mass (CM) is at 50 cm, as expected. Therefore, the support should be at the center of the beam, at 50 cm. The required shift is 25 cm, not 15 cm.

Verifying support movement logic

The question is asking about shifting the support to restore equilibrium after adding the second cube. Given the symmetry of the system with identical cubes at both ends, the center of mass should be at the center of the beam, requiring a 25 cm shift left. The symmetry supports this conclusion.

Reassessing cube positions and center of mass

If the cube is placed on the beam with one face flush to the end, the right cube would sit between L-a and L, and the left cube from 0 to a. This setup is symmetric, so CM ends up at the center, making the shift 25 cm. The initial equilibrium indicating a=25 validates this.

Finalizing shift determination and symmetry

With two cubes symmetrically placed, the system’s center of mass (CM) should be at 50 cm, indicating a 25 cm shift needed from the right to restore equilibrium. The question asks for this shift, not the new position. The answer is a 25 cm shift, confirming symmetry holds.

Clarifying support shift and torque equilibrium

They ask how much to move the support to restore balance, which implies it won't necessarily be at the center. Since the system is symmetric with identical cubes at the ends, the center of mass is at the midpoint, so a 25 cm shift from the initial 75 cm position to the new support at 50 cm is necessary. The shift can

Thought for 3m 25s

Answer

Возьмём ось вдоль бруса от левого конца.

После того как на левый конец поставили такой же кубик, система стала симметричной: кубики одинаковые и стоят на концах, сам брус однородный ⇒ центр масс всей системы окажется ровно посередине бруса, то есть на

x=L2=1002=50 смx=\frac{L}{2}=\frac{100}{2}=50\text{ см}

А подставка изначально была на расстоянии l=25l=25 см от правого конца, то есть на координате

x0=10025=75 смx_0 = 100-25=75\text{ см}

Значит, чтобы снова было равновесие, подставку нужно передвинуть на

Δx=7550=25 см\Delta x = 75-50 = 25\text{ см}

Ответ: 25 см.

Share this Q&A