Подробно реши третье задание из прикрепленного фай...

Created on: November 30, 2025

Answered using GPT-5.1 Thinking by Chat01

Question

HW3_2025.pdf

Подробно реши третье задание из прикрепленного файла. Ответ на английском, подробное описание.

Thought

Analyzing the filter behavior and impulse response

The user wants to solve Problem 3 in detail. The frequency response needs to be modified to F(ω)=H(ω−3π/8), utilizing the frequency shift property. This shifts the time-domain solution by adjusting the impulse response formula. I'll confirm the mapping from H(z) to H(ω) to ensure accuracy in the solution.

Explaining the impulse response and frequency shift

The impulse response starts from the original H(z), identifying values like h[0]=1, h[1]=2, etc. Then, we apply the frequency shift to get f[n]=e^{j(3π/8)n} h[n]. I'll express this using complex exponentials (cos and sin) and potentially convert to the z-domain for F(z). I'll focus on applying the frequency shift property carefully.

Computing the impulse response with detailed calculations

I'll recheck the sign and direction for accuracy, expressing the new impulse response with a complex form due to the modulation factor. I’ll break down each value for clarity: For n=1: exponent gives a value of 2 e^{j3π/8} ≈ 0.7654 + j1.8478. For n=3: f[3] ≈ -7.3912 − j3.0616. Complex coefficients are expected, though real-valued alternatives could be explored.

Providing a step-by-step explanation of the impulse response

We don’t need approximations for the trig functions, so I’ll leave them symbolic (cos(...), sin(...)) for simplicity. We’ll express the impulse response as {1, 2 e^{j3π/8}, 4 e^{j3π/4}, 8 e^{j9π/8}} for n=0..3. I’ll explain why this follows the modulation pattern. The citation to the PDF will be included.

Thought for 44s

Answer

We’re solving Problem 3 from your PDF: fileciteturn0file0L14-L20

A filter has the transfer function
H(z)=1+2z1+4z2+8z3H(z) = 1 + 2z^{-1} + 4z^{-2} + 8z^{-3}.
Determine the impulse response of the filter with the modified frequency response
F(ω)=H(ω3π/8)F(\omega) = H(\omega - 3\pi/8).


1. Original filter: transfer function → impulse response

For a causal LTI discrete–time system, the transfer function in zz-domain is

H(z)=n=h[n]znH(z) = \sum_{n=-\infty}^{\infty} h[n]\,z^{-n}

Comparing this with the given

H(z)=1+2z1+4z2+8z3H(z) = 1 + 2z^{-1} + 4z^{-2} + 8z^{-3}

we can read off the impulse response coefficients directly:

  • The coefficient of z0z^{0} is 11h[0]=1h[0] = 1
  • The coefficient of z1z^{-1} is 22h[1]=2h[1] = 2
  • The coefficient of z2z^{-2} is 44h[2]=4h[2] = 4
  • The coefficient of z3z^{-3} is 88h[3]=8h[3] = 8
  • No other powers appear → h[n]=0h[n] = 0 for n<0n < 0 and n>3n > 3

So the original impulse response is

h[n]={1,n=02,n=14,n=28,n=30,otherwiseh[n] = \begin{cases} 1, & n = 0 \\ 2, & n = 1 \\ 4, & n = 2 \\ 8, & n = 3 \\ 0, & \text{otherwise} \end{cases}

2. Frequency response and DTFT reminder

The frequency response of the filter is

H(ejω)=n=h[n]ejωnH(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]\, e^{-j\omega n}

This is just the DTFT (discrete-time Fourier transform) of h[n]h[n].

Now we’re told that the new filter has a frequency response

F(ω)=H(ω3π/8)F(\omega) = H(\omega - 3\pi/8)

In standard notation, that means

F(ejω)=H(ej(ω3π/8))F(e^{j\omega}) = H\big(e^{j(\omega - 3\pi/8)}\big)

So it is the original frequency response shifted along the ω\omega-axis by +3π/8+3\pi/8.


3. Time–frequency shift property

We use the frequency-shift property of the DTFT:

  • If h[n]FH(ejω)h[n] \xleftrightarrow{\mathcal{F}} H(e^{j\omega}),
  • then the sequence h[n]  ejω0nh[n]\; e^{j\omega_0 n} has DTFT H(ej(ωω0))H(e^{j(\omega - \omega_0)}).

In symbols:

h[n]  DTFT  H(ejω)h[n] \;\xleftrightarrow{\text{DTFT}}\; H(e^{j\omega}) h[n]ejω0n  DTFT  H(ej(ωω0))h[n]\, e^{j\omega_0 n} \;\xleftrightarrow{\text{DTFT}}\; H(e^{j(\omega - \omega_0)})

Compare this to our definition:

F(ejω)=H(ej(ω3π/8))F(e^{j\omega}) = H(e^{j(\omega - 3\pi/8)})

So here, ω0=3π/8\omega_0 = 3\pi/8. That means the new impulse response f[n]f[n] is related to the old one h[n]h[n] as:

f[n]=h[n]ej(3π/8)nf[n] = h[n] \, e^{j(3\pi/8)n}

This is the key step: shifting the frequency response by +3π/8+3\pi/8 corresponds to multiplying the time-domain impulse response by ej(3π/8)ne^{j(3\pi/8)n}.


4. Explicit form of the new impulse response

We already know h[n]h[n] is non-zero only for n=0,1,2,3n = 0,1,2,3. So compute f[n]f[n] on these indices:

f[n]=h[n]  ej(3π/8)nf[n] = h[n]\; e^{j(3\pi/8)n}
  • For n=0n = 0:

    f[0]=h[0]ej(3π/8)0=1e0=1f[0] = h[0]\, e^{j(3\pi/8)\cdot 0} = 1 \cdot e^{0} = 1
  • For n=1n = 1:

    f[1]=h[1]ej(3π/8)1=2ej3π/8f[1] = h[1]\, e^{j(3\pi/8)\cdot 1} = 2\, e^{j3\pi/8}
  • For n=2n = 2:

    f[2]=h[2]ej(3π/8)2=4ej3π/4f[2] = h[2]\, e^{j(3\pi/8)\cdot 2} = 4\, e^{j3\pi/4}
  • For n=3n = 3:

    f[3]=h[3]ej(3π/8)3=8ej9π/8f[3] = h[3]\, e^{j(3\pi/8)\cdot 3} = 8\, e^{j9\pi/8}

For all other nn:

f[n]=0,n<0 or n>3f[n] = 0,\quad n < 0 \text{ or } n > 3

So the impulse response of the modified filter is

f[n]={1,n=02ej3π/8,n=14ej3π/4,n=28ej9π/8,n=30,otherwisef[n] = \begin{cases} 1, & n = 0 \\ 2\,e^{j3\pi/8}, & n = 1 \\ 4\,e^{j3\pi/4}, & n = 2 \\ 8\,e^{j9\pi/8}, & n = 3 \\ 0, & \text{otherwise} \end{cases}

5. (Optional) Real and imaginary parts

If you want to see this in terms of cosine and sine, you can write

f[n]=h[n](cos(3πn/8)+jsin(3πn/8))f[n] = h[n]\big(\cos(3\pi n/8) + j\sin(3\pi n/8)\big)

Explicitly:

  • f[0]=1f[0] = 1
  • f[1]=2(cos(3π/8)+jsin(3π/8))f[1] = 2\big(\cos(3\pi/8) + j\sin(3\pi/8)\big)
  • f[2]=4(cos(3π/4)+jsin(3π/4))f[2] = 4\big(\cos(3\pi/4) + j\sin(3\pi/4)\big)
  • f[3]=8(cos(9π/8)+jsin(9π/8))f[3] = 8\big(\cos(9\pi/8) + j\sin(9\pi/8)\big)

Final answer (compact)

The filter with frequency response F(ω)=H(ω3π/8)F(\omega) = H(\omega - 3\pi/8) has impulse response

f[n]=h[n]ej(3π/8)nf[n] = h[n]\,e^{j(3\pi/8)n}

where h[n]h[n] is the original impulse response,

h[n]={1,n=02,n=14,n=28,n=30,otherwiseh[n] = \begin{cases} 1, & n=0 \\ 2, & n=1 \\ 4, & n=2 \\ 8, & n=3 \\ 0, & \text{otherwise} \end{cases}

So

f[n]={1,n=02ej3π/8,n=14ej3π/4,n=28ej9π/8,n=30,otherwisef[n] = \begin{cases} 1, & n = 0 \\ 2\,e^{j3\pi/8}, & n = 1 \\ 4\,e^{j3\pi/4}, & n = 2 \\ 8\,e^{j9\pi/8}, & n = 3 \\ 0, & \text{otherwise} \end{cases}

Question

Подробно реши пятое задание из прикрепленного файла. Ответ на английском, подробное описание. код в матлабе

Share this Q&A