这样的一个审稿意见该如何回复,并且给我相应的参考文献

Created on: October 16, 2025

Answered using GPT-5 Thinking by Chat01

Question

image.pngimage.png

这样的一个审稿意见该如何回复,并且给我相应的参考文献

Thought

Thought for 3m 59s

Answer

下面给你一个可直接粘贴到「作者回复」里的英文答复模板,并附上要点式中文思路与可引用的参考文献(覆盖“25% 单轴拉伸的可行性”“如何在器件中维持/实现”“可行的自旋电子学器件架构”三块)。你可以把其中材料/器件名称替换成你的体系。


Response to Reviewer 2 – Comment on experimental feasibility of ~25% uniaxial tensile strain

Reviewer’s comment: “…the manuscript lacks any discussion on the experimental feasibility of achieving and maintaining such a large uniaxial tensile strain in a real device… The authors should discuss how this extreme strain could be implemented within a functional spintronic device architecture.”

Response: We thank the reviewer for raising this important point. We have added a new subsection entitled “Experimental routes to large uniaxial strain and integration in spintronic devices” (pp. X–Y) that summarizes feasible approaches and cites representative demonstrations:

  1. Strain limits in 2D membranes. Atomically thin membranes can withstand unusually high elastic strain before fracture (graphene ≈20–25% and typical TMDCs such as MoS₂ ≈10–11%). This sets an upper bound for what the active layer can tolerate, and motivates using van der Waals (vdW) crystals for extreme-strain studies. (ResearchGate)

  2. How to apply and maintain large uniaxial strain.
    Elastomeric stretching / pre-strain: Transferring the vdW stack onto pre-stretched PDMS and then relaxing the substrate, or direct uniaxial stretching, yields large, controllable tensile strain. Kirigami micro-cuts further amplify stretchability; graphene FETs and photodetectors have been shown to operate under ≥100% macroscopic stretch, illustrating device-level robustness of contacts and channels. (aluru.mechse.illinois.edu)
    Direct evidence of high-strain device operation: Wrinkled/structured graphene FETs retain electrical characteristics at 20–30% applied strain; we cite these as concrete examples that transistor-class devices remain functional in this regime. (ACS Publications China)
    On-chip MEMS actuators: Comb-drive/electrothermal MEMS platforms can deliver in-situ, continuously tunable uniaxial strain to suspended 2D flakes while allowing simultaneous electrical/optical measurements—well suited for calibrated 5–15% strain and cyclic tests. (Wiley Online Library)
    Local strain concentration: When global 25% is impractical, local uniaxial strain of similar magnitude can be generated and stabilized via wrinkles/nanobubbles under the active region, which has been widely used in 2D materials (including the classic nanobubble experiments). (RSC Publishing)
    Preventing slippage / ensuring stability: We discuss contact and encapsulation strategies (e.g., hBN capping, metal “clamps”) and show that frictional clamping governs strain transfer and long-term stability; serpentine interconnects/island-bridge layouts accommodate substrate stretch while keeping fragile regions safe. (Boston University)

  3. A practical spintronic architecture under strain. We outline two experimentally grounded options now added to the manuscript:
    (i) vdW spin-filter MTJ: graphene/CrI₃/graphene junctions (or related vdW MTJs) integrated on a pre-strained elastomer/MEMS frame; the vdW barrier/channel can be patterned into a kirigami ribbon along the strain axis. These junctions are established spintronic building blocks with giant TMR. (Science)
    (ii) All-2D spin valves: graphene spin transport with 2D ferromagnets (e.g., Fe₃GeTe₂ or Cr₂Ge₂Te₆) as injector/detector or proximitized “seamless” valves; electrodes are routed with serpentine traces to tolerate substrate stretch while the channel region is strained. (American Chemical Society Publications)

We have also clarified that piezoelectric substrates (e.g., PMN-PT) are excellent for fine in-plane strain tuning but typically deliver ≪1% in-plane strain and thus serve as a complementary route for small-strain verification rather than 25% extreme-strain tests. (arXiv)

Overall, these additions (i) justify the physical plausibility of large uniaxial strain in ultrathin vdW materials, (ii) provide concrete, device-compatible methods to apply and stabilize strain, and (iii) present realistic spintronic layouts in which our predicted Curie-temperature enhancement can be tested.


中文要点(便于你在正文里扩写)

  • 选材理由:二维膜(石墨烯、TMDC、vdW 磁体)可承受远高于体材料的弹性拉伸(石墨烯可达 ~20–25%,MoS₂ ~10–11%)。(ResearchGate)
  • 施加方式:PDMS 预拉伸/直接拉伸(配合 kirigami)、MEMS 片上拉伸平台、利用褶皱/纳米气泡做局域高应变。(aluru.mechse.illinois.edu)
  • 维持与可靠性:hBN 封装+金属夹持减少滑移;蛇形互连与“岛-桥”结构让电极承受位移而器件有源区承担期望的单轴拉伸。(Boston University)
  • 器件架构示例:图灵磁阻的 graphene/CrI₃/graphene 自旋过滤 MTJ;或 graphene + Fe₃GeTe₂/Cr₂Ge₂Te₆ 的全二维自旋阀,二者都可与上述应变平台结合。(Science)
  • 补充一句实际预期:如果 25% 全局拉伸过于激进,可先在 5–10% 区间验证趋势,并用“局域”应变结构逼近更高应变点。

Selected references (for your manuscript)

  1. Deng et al. “Strain in Single-Wrinkle on MoS₂…”, Nanoscale (2019): notes graphene ~25% & MoS₂ ~11% failure strains. (ResearchGate)
  2. Liu et al. “Strain engineering of 2D semiconductors and graphene…”, Light: Sci. & Appl. (2020) – broad methods/limits. (Nature)
  3. Han et al. “Experimental nanomechanics of 2D materials for strain engineering”, Applied Nanoscience (2021). (SpringerLink)
  4. Blees/Aluru group: “Kirigami-inspired atomically-thin graphene sensors (FET & photodetection up to 130% stretch; electrodes to 240%)”, Microsyst. & Nanoeng. (2020). (aluru.mechse.illinois.edu)
  5. “Wrinkled PDMS-based Graphene FET biosensor—IV curves at 20–30% strain (SI)”, ACS Appl. Electronic Materials (2024). (ACS Publications China)
  6. Xie et al. “Straining & Tuning Atomic-Layer NEMS via SOI comb-drive MEMS”, Adv. Mater. Technol. (2020). (Wiley Online Library)
  7. Review: “MEMS platforms for testing nanostructures” – overview of tensile platforms for large, uniform strain. (MAE at NC State)
  8. Paiella et al. “Uniaxial strain redistribution & clamping in corrugated graphene”, Nano Lett. (2014). (Boston University)
  9. Levy et al. “Strain-induced pseudo-magnetic fields >300 T in graphene nanobubbles”, Science (2010). (Science)
  10. Rogers/Huang review “Stretchable, Curvilinear Electronics…”, Adv. Mater. (2010) – serpentine interconnects & island–bridge layouts for large stretch. (Rogers Research Group)
  11. Song et al. “Giant tunneling magnetoresistance in spin-filter vdW heterostructures (graphene/CrI₃/graphene)”, Science (2018). (Science)
  12. Zhang et al. “Nonlocal spin valves based on graphene/Fe₃GeTe₂ vdW heterostructures”, ACS AMI (2023). (American Chemical Society Publications)
  13. Garcia et al. “A seamless graphene spin valve based on proximity to Cr₂Ge₂Te₆”, Nature Electronics (2024). (Nature)
  14. Note on piezoelectric substrates: “Electric-field-induced PMN-PT in-plane strain (<0.1%)”, (Fe₃GaTe₂/PMN-PT study). (arXiv)

需要,我也可以把你文稿里新增的小节草稿(中文或英文)直接写好,替你对接图/表和参考文献编号。

Question

你帮我找几篇对二维材料施加较大拉伸应变的文章

Thought

Preparing list of representative papers

I’ll prepare a list of relevant papers: Bertolazzi 2011 on MoS2 strains up to 11%, Blees et al 2015 on graphene kirigami (with stretch far beyond 100%, but I need precise numbers). I’ll also include a review from Light Sci Appl (2020), MEMS platforms (2020), and others relevant to local strain studies.

Thought for 40s

Answer

当然可以!下面按“如何在实验里实现较大拉伸应变(单轴/局域/可调)”给你挑了几篇代表性论文,每篇都附上实现方法与应变量级的一句话摘要,便于你在引言或答复审稿人时引用。


1) 直接单轴拉伸:二维材料的极限与可达区间

  • Bertolazzi et al., ACS Nano (2011) — 单层/少层 MoS₂ 悬挂膜纳米力学拉伸与断裂,报告~10–11% 的可逆弹性应变上限,建立了 TMDC 在大应变下的力学框架。 (InfoScience)
  • Lee et al., Science (2008) — 单层石墨烯悬挂膜 nanoindentation 测得本征强度与非线性弹性常数,说明其在失稳前可承受很高的弹性应变,为后续大应变实验提供基准。 (Science)

2) 结构化放大应变:kirigami / 预应变弹性体

  • Blees et al., Nature (2015) “Graphene kirigami” — 通过在石墨烯上引入 kirigami 切割图案,将原本难以持续的拉伸转化为可大幅度延展且可循环的形变,并保持器件级可用性(弹簧/铰链/柔性电极等)。(Materiality)
  • 综述:Liu et al., Light: Science & Applications (2020) — 系统总结了二维半导体与石墨烯的应变工程方法与极限;指出通过单轴或组合剪切可在~12–17% 甚至更高区间实现可逆调控,并讨论>20% 情形的理论预期。(Nature)

3) 片上可调平台:MEMS 主动拉伸

  • Xie et al., Adv. Mater. Technol. (2020) — 将二维材料与 SOI 微机电(comb-drive/热驱动)致动器集成,实现在芯片上连续、可校准的单轴拉伸,适合电/光学原位测量与循环加载。(Wiley Online Library)

4) 局域高应变:纳米气泡/褶皱聚集

  • Levy et al., Science (2010) — 在铜基底上形成石墨烯纳米气泡,产生极大的局域拉伸应变(表现为>300 T 的伪磁场),为“当全局25%不易实现时的局域高应变”提供了成熟范式。(Science)
  • Paiella et al., Nano Letters (2014) — 研究夹持/摩擦对石墨烯单轴应变重分布的影响,给出通过“金属夹持/封装”提升应变传递与稳定性的实验证据与设计要点。(Boston University)

你可以怎么在文稿里写(示例句)

  • “二维薄膜普遍具有远超体材料的可逆弹性窗口:MoS₂ 悬挂膜在室温下可达 ~10–11% 单轴拉伸而不发生断裂,石墨烯的本征强度和非线性弹性常数显示其在失稳前能承受更高应变。” (InfoScience)
  • “器件层面,可通过 kirigami 图案与预应变弹性基底实现大幅度、可循环的有效拉伸;另一方面,MEMS 片上致动器提供了可定量调谐的单轴应变平台,便于原位电/磁/光学测试。” (Materiality)
  • “当全局极限拉伸不现实时,可利用褶皱/纳米气泡产生局域高应变以验证理论预测并放大物性响应。” (Science)

如果你告诉我更偏好的材料体系(比如 CrI₃、Fe₃GeTe₂、MoS₂、WS₂ 等)或目标应变区间(比如 ≥15% 全局 / ≥20% 局域),我可以再定向补充几篇同体系的大应变实验具体器件演示论文。

Question

对二维材料,目前实验上能实现的极限应变是多少?

Browser

"\u5bf9\u4e8c\u7ef4\u6750\u6599\uff0c\u76ee\u524d\u5b9e\u9a8c\u4e0a\u80fd\u5b9e\u73b0\u7684\u6781\u9650\u5e94\u53d8\u662f\u591a\u5c11\uff1f\n"

Answer

这是一个非常好的问题 — 实验上二维材料能实现的最大应变受多种因素限制(如材料本身强度、缺陷、夹持方式、应变速率、界面附着与滑移等)。下面我整理一些文献中“极限应变 / 实验突破值 / 可逆弹性上限”方面的数据和讨论,给你一个比较靠谱的参考范围和局限条件。


实验报道 / 综述中的极限应变值

材料 / 系统报道的最大应变说明 / 限制条件出处 / 备注
单层石墨烯 (CVD, push-to-pull in-situ 张拉)~ 6%在 ~10 µm² 区域膜片中测得极限断裂应变约 6%;在该测试中还测得 ~60 GPa 的极限拉伸强度。(Nature)
MoS₂(悬挂膜、纳米力学拉伸)~ 10–11%经典文献(如 Bertolazzi 等)报告 MoS₂ 在纳米结构下可承受 ~11% 的应变。此值常被视为 TMDC 的基准极限。(可在该综述 /力学论文中找到)(SpringerLink)
kirigami / 结构化石墨烯高达数十 %(大幅度可伸展)通过在石墨烯上做 kirigami /切割结构,将应变 “扩展” 空间,实现宏观 >100% 的结构形变;但这里高应变大多靠几何重分配 / 铰链效应,而不是材料自身均匀拉伸。这种方法常出现在应变工程 / 可拉伸电子器件方向的论文中(参见综述)(ScienceDirect)
MEMS 拉伸平台中的 MoS₂~1.3%有论文报道将单层 MoS₂ 集成到 MEMS 致动器上,实现约 1.3% 的应变。(arXiv)
纳米压印 (nanoimprint) 应变策略未公开极限最高值最近有用纳米压印法(nanoimprint-induced strain engineering, NISE)给 2D 材料施加可控应变(如在 MoS₂ 薄膜上),用于可控应变剖面控制,但论文中并未把极限应变作为主攻目标。(Nature)

此外,一些综述和专门研究还指出:

  • 在实验条件下,真实材料常常存在缺陷、边界裂纹、夹持不理想、界面滑移或应变不均匀等问题,这些都会显著降低可达到的应变极限。(SpringerLink)

  • 在“非均匀应变”(即局域应变、褶皱、弯曲/曲率引入梯度应变等)策略下,可能在局部区域实现比全局应变更高的应变,但那通常不是材料在整片均匀拉伸下承受的值。(Wiley Online Library)


结论性估计及对你情境的适用性

  • 从最保守、标准张拉实验来看,石墨烯 ~6% 是有可靠实验证据的极限断裂应变(在较小尺度区域)(Nature)。
  • 对于 TMDC(如 MoS₂),10–11% 是在理想结构下的报道极限,应视为“理想条件下可及上限”而非器件可靠运行值。
  • 在器件 / 实际应用场景中,考虑缺陷、夹持方式、滑移、应变不均匀等影响,常见可行的应变范围要保守许多(几乎总是在几百分比到十几个百分点之间)。
  • 若你说的是“全局、可控、可重复的单轴拉伸”在器件结构中长期使用的应变,现实中通常难以稳定超过 ~5–10%。
  • 如果采用结构辅助(比如 kirigami、局域应变聚焦、褶皱/折叠、柔性基底等)策略,那么在局部区域可能突破这个范围,但那更像是几何重分配,而不是材料自身承受 25% 均匀拉伸。

如果你愿意的话,我可以帮你查几篇最近两三年(2022–2025 年)针对你材料体系(比如你文中用的那种二维磁体或半导体)报道的极限应变值,以作最新对比。要我帮你查吗?

Share this Q&A