Номер 6:Каждый член последовательности натуральных...

Created on: October 14, 2025

Answered using GPT-5 Thinking by Chat01

Question

Номер 6:Каждый член последовательности натуральных чисел, начиная с третьего, равен сумме двух предыдущих, а восьмой член равен 1313.
Сколько существует таких последовательностей?
Чему равен второй член последовательности, если первый равен 13?
Номер 7: Дан вписанный четырёхугольник ABCD. Оказалось, что касательная в точке D к описанной окружности параллельна биссектрисе угла АВС. При этом угол ABD = 10° и
Угол DBC = 92°. Найдите угол BCA. Ответ выразите в градусах.

Thought

Solving the recurrence problem

I'm given a recurrence relation a_n = a_{n-1} + a_{n-2}. We need to find how many sequences produce a8 = 1313 and determine the second term when a1 = 13. I’ll calculate the terms step by step using the Fibonacci coefficients and solve for the required values. I have to be exact in the arithmetic.

Solving the Diophantine problem

I have the equation 8x + 13y = 1313 with x and y as positive integers. Given x = 13, I’ve computed y = 93. Now, I’ll count the number of solutions to this linear Diophantine equation, ensuring positivity for both x and y. I'll find all integer solutions first, then focus on the positive ones.

Solving with mod

To solve 13y ≡ 1313 mod 8, I first reduce the equation. This gives y ≡ 5 mod 8, so y = 5 + 8k. Substituting into the equation for x, I find x = 156 - 13k. For both x and y to be positive, k must be between 0 and 11. This ensures valid integer solutions.

Verifying solutions and solving the next problem

I confirmed that k ≥ 0 for the sequence problem, and there are 12 solutions for x and y, including at k = 11 where we get x = 13 and y = 93.

Now, moving on to the next problem: It's a cyclic quadrilateral with a tangent at D parallel to the internal bisector of angle ABC. I need to find angle BCA based on the given info.

Solving the cyclic quadrilateral problem

The key here is the geometric relationships: since the tangent at D is parallel to the internal angle bisector of ∠ABC, it causes certain angle equalities. The angle between the tangent at D and chord DB equals the angle in the opposite arc (∠DAB or ∠DCB). Also, using the alternate segment theorem helps relate the tangent’s angle with other angles in the diagram.

Solving the angles in cyclic quadrilateral

The angles involved here are quite intricate. Due to parallelism between the tangent at D and the angle bisector, the angle between the tangent and the chord DB equals 41°. Using the alternate segment theorem, the angle subtended by arc DB at A or C is the same, hence ∠DAB = 41°.

Reconciling geometry with angles

The angle ∠DAB uses arc DB without A, making its measure 82°. Arc DC is 184°. We’re working with the sum of arcs around the circle and angles in triangles like ABD and DBC. However, some assumptions or orientations might need adjusting, particularly concerning ∠DAB and ∠DCB. I'll need to revisit the calculation setup for clarity.

Resolving angle conflicts

I’m reconsidering whether angle ∠DAB could be 41°. The angle between the tangent and chord DB should match with either ∠DAB or ∠DCB, depending on orientation. However, testing both 41° and 139° creates inconsistencies. Therefore, ∠DAB cannot be 41°, and I must check if 139° fits better with the cyclic quadrilateral.

Final verification of angles

After extensive checking, I confirm that ∠DAB = 139° and ∠DCB = 41° fit at angle D. This creates consistency. For ∠BCA, calculation gives 31°. Double-checking using the tangent–chord theorem, further confirms the result. The sum of angles matches, so the solution appears robust and self-cons

Thought for 2m 51s

Answer

Вот решения.

№6

Пусть a1=x, a2=ya_1=x,\ a_2=y. Тогда

a8=8a1+13a2=8x+13y=1313.a_8=8a_1+13a_2=8x+13y=1313.

Ищем пары натуральных x,yx,y. По модулю 88:

13y13131(mod8)  5y1(mod8)  y5(mod8).13y\equiv 1313\equiv 1\pmod 8 \ \Rightarrow\ 5y\equiv1\pmod8 \ \Rightarrow\ y\equiv5\pmod8.

Пишем y=5+8ky=5+8k (k0k\ge0). Тогда

8x=131313y=1248104kx=15613k.8x=1313-13y=1248-104k \Rightarrow x=156-13k.

Требуем x1x\ge1, откуда k11k\le11. При k=0,1,,11k=0,1,\dots,11 получаем 12 пар.

Ответы по №6:

  • Таких последовательностей 12.
  • Если a1=13a_1=13: 813+13a2=1313a2=938\cdot13+13a_2=1313\Rightarrow a_2=93.

№7

Дан вписанный ABCDABCD, касательная в DD параллельна биссектрисе ABC\angle ABC. Задано ABD=10\angle ABD=10^\circ и DBC=92\angle DBC=92^\circ, значит ABC=102\angle ABC=102^\circ, половина — 5151^\circ.

Угол между биссектрисой и BDBD равен 5110=4151^\circ-10^\circ=41^\circ. По теореме о касательной и секущей (угол между касательной и хордой равен вписанному углу, опирающемуся на ту же хорду), этот же угол равен DCB\angle DCB. Следовательно,

DCB=41.\angle DCB=41^\circ.

Далее DCA=DBA=10\angle DCA=\angle DBA=10^\circ (оба опираются на дугу DADA). Тогда

BCA=DCBDCA=4110=31.\angle BCA=\angle DCB-\angle DCA=41^\circ-10^\circ=31^\circ.

Ответ по №7: BCA=31\angle BCA= \boxed{31^\circ}.

Question

Задание 8:В ряд стоят 24 ящика, пронумерованных слева направо числами от 1 до 24. В ящиках с нечётными номерами лежит по 45 шариков, с чётными — по 46. За одну операцию разрешается выбрать не крайний справа ящик с нечётным количеством шариков и переложить один шарик из него в соседний справа ящик. Если никакую операцию сделать невозможно, процесс заканчивается.
Через какое минимальное количество операций мог закончиться процесс?
Через какое максимальное количество операций мог закончиться процесс?
Задание 5: В описанном четырёхугольнике ABCD оказалось, что LABC = LACD = 90°, АВ = 5,
ВС = 3. Найдите CD.
Задание 3: Последовательность целых чисел {хп) такова, что х1 =1400 и хп+1 = |Хп - 11| для всех п> 1. Найдите такое минимальное п, что Хп+2 = Хп

Thought

Analyzing box operations

It looks like the process stops when no box with an odd count is left, except possibly the rightmost box. The operation works by moving a ball to the right each time, and I want to figure out the minimal and maximal number of operations required before the process ends. It's similar to the "chip firing" or "Bulgarian solitaire" concept.

Evaluating process end condition

The operation stops when no more moves can happen, which occurs when all boxes from 1 to 23 are even. Box 24 could be odd or even, but the key focus is on parity flipping. Initially, odd-indexed boxes are odd and even-indexed ones are even, and each move toggles the parity of adjacent boxes.

Examining operations process

The process is like pushing buttons to make boxes 1–23 even. Operations can only happen when a box is odd, triggering the toggle. This is a standard procedure for "making all even using right moves.” I wonder if the number of operations is determined uniquely, because order might matter. A greedy approach of moving left to right handles the task.

Determining number of operations

The final count of operations depends on how many times each index is odd when visited, which is determined by the initial parity and previous operations. A greedy approach usually results in the minimal number. I’m wondering if the number of operations is invariant or unique across different sequences. Let’s check.

Analyzing operation counts

I'm modeling operations at each box where each operation decreases balls at box ii and increases them at i+1i+1. The process ends when boxes 1–23 are even. The minimum operation count can be determined by a greedy approach, operating from left to right. For maximal operations, the constraint is non-negativity, and the total operations are finite based on initial ball counts.

Analyzing maximum operations

The idea is that we can perform multiple operations at each box, pumping balls to the right while respecting parity conditions. For maximal operations, we need to ensure that the total number of moves fits within box constraints and respects both non-negativity and parity. Essentially, maximizing the operations means pushing as many balls as possible to the rightmost box while adhering to these constraints.

Evaluating operation feasibility

We're examining how many operations we can perform while respecting both flow and parity constraints. By setting the final count of balls in each box to zero, we're trying to execute the maximum number of operations. The challenge lies in achieving this while maintaining the rule that we only operate when the number of balls is odd, which requires careful scheduling of moves.

Refining operation strategy

The key challenge here is ensuring that operations only happen at odd-numbered boxes, due to the parity constraint. After performing an operation at box 1, it becomes even, which prevents further operations unless it's toggled back to odd. This leads to a critical insight: Each operation sequence must alternate between boxes i and i-1 to maintain the necessary oddness and maximize operations.

Maximizing operations with constraints

The operations must alternate between adjacent boxes to maintain correct parity. The maximum number of operations is determined by keeping track of the parity toggles at each box. A recursive pattern shows that the maximum operations at each box follow floor(i/2). This results in a total of 144 operations, which is consistent with the calculated upper bounds.

Interpreting quadrilateral properties

The problem seems to describe a tangential quadrilateral, where angle conditions suggest using Pitot's theorem. We know AB = 5, BC = 3, and we need to find CD. Given right angles and tangency properties, the relationship between the sides will allow us to calculate CD as CD = AD - 2. There’s no clear unique solution yet, but this setup seems plausible.

Analyzing tangential quadrilateral

I’m figuring out how to approach the tangential quadrilateral with right angles at B. The relationships between tangents from each vertex to the incircle seem to tie into the perpendicularity at B. The key observation is that the arc between the tangency points of sides AB and BC is 90°, which helps determine the geometry of the quadrilateral.

Analyzing angles and tangents

I’m trying to reconcile the properties of tangents and diagonals in a quadrilateral with right angles at two vertices. The relation between side lengths and tangents can be explored using Pythagoras’ theorem and coordinate geometry. I’m also examining how the coordinates of key points relate to tangency lengths, especially with respect to their placement on the circle.

Exploring tangential geometry

I'm considering how to relate the length of a side of a tangential quadrilateral to the angles between the tangent lines at each vertex. For each tangent, the distance from the vertex to the point of tangency follows a formula that involves the cotangent of half the interior angle. Using geometric relationships, I can express side lengths like AB in terms of these angles.

Analyzing the tangential polygon geometry

I'm considering the geometry of tangential polygons, especially examining how we can describe the intersection points using normal vectors. The formula for the corner point at adjacent normals involves solving linear systems, and I can compute the intersection by expressing vectors in terms of their angle differences. The solution combines these normals based on their inner products and angles.

Analyzing tangential quadrilateral geometry

I'm working through the geometry of this quadrilateral with tangential sides and normals. We know the internal angles must sum to 360°. Using the sum of normal vectors and tangent formulas, I can calculate side lengths and solve for unknown angles by relating tangent lengths and diagonal relationships. The final goal is ensuring AC is perpendicular to CD and computing vertex positions with respect to these normal vectors.

Computing coordinates and vector relations

I'm calculating the position of vertex C based on its intersection with the lines of normals, and I know A lies on a line defined by n1 and n4. I'll solve for the vector C - A being parallel to n3, leading to more equations to relate sides like BC and AB. Ultimately, I need to find essential relations to fully solve for the unknowns using known side lengths.

Evaluating geometric relations

I'm working through the geometric setup with intersections and defining lengths like AB, BC, and AC, aiming for consistency. The length of AC should align with n3 to complete the parallel condition, requiring a closer look at angles and their trigonometric relations. It seems plausible that r ≈ 2.366, but there's still a bit to refine with angles.

Evaluating tangent relationships

Okay, I've got things lined up: using trigonometric relations here including BC length, cot α, and the perpendicular condition for AC. The angle α seems pretty well defined now, and the equations are balancing with BC and AB lengths looking good. But still, finding exact values for r and CD depends on further angle relations and using the half-angle formulas. This could get tricky!

Solving for r and CD

I’m working through the geometric relations here, using the tangent and cosine formulas to calculate the value of r and CD. I've got a formula for r based on φ23, but the unknown φ34 complicates the equation for CD. I also want to ensure all angle relations are consistent, especially with the perpendicular and parallel conditions. It’s tricky, but we are making progress.

Analyzing geometric relations for CD

I'm looking into some of the trigonometric relationships and geometric assumptions to compute the length of CD in this configuration. It's tricky, though, with several unknowns and complex angle dependencies. One option might be to switch strategies and rely on coordinates or the Pythagorean theorem to simplify the calculations. Let's keep going!

Geometrically evaluating CD length

I'm analyzing how D shifts along n3 and how the length of CD depends on φ34. There are some tricky angle relations, and the geometry involves a lot of tangent and trigonometric identities. It's a bit complex, but I think using the right conditions should allow me to simplify it — possibly through projections or using involved relationships between angles and distances.

Analyzing triangle geometry

I’m working through the geometry of triangle BCD and its relationships with the tangential quadrilateral. I’m considering various methods to find the length of CD using properties of right triangles, tangency points, and projections, but it looks like there is enough constraint to compute it with further details on φ34 and other angles.

Computing CD length

I’ve determined some key angles and expressions for tangents of angle halves. Now I’m focusing on calculating CD using the relations between t23, t41, and known values for r. The algebra steps are getting a bit intricate, but everything, including U and the necessary tangent functions, should work out as planned with final simplification.

Simplifying CD equation

I’ve worked through the steps to compute tan(φ34/2) and further simplified the expression for t34 to √34 / 2. Now, combining the results for t23 and t34 with the computed value for r, I’ll finalize the expression for CD by adding these two tangents and handling their common denominator. Time to plug in the values!

Finalizing CD value

The derivation for CD was long, but it simplifies neatly to 15/2 after considering tangential quadrilateral properties. By utilizing incenter coordinates, tangents, and half-angle formulas with some geometric insights, we reach CD = 15/2. The solution is computational but can be presented concisely, summarizing the essential steps for clarity.

Addressing sequence periodicity

The sequence follows a mapping where x_{n+2} = |x_n - 11|, and its behavior depends on the modulo 22 transformation. The sequence eventually becomes periodic, with a period of 2, as it oscillates around t → 11-t. By computing using transformations, we observe this cycle once x_{n+2} = x_n, which is a periodicity indicator.

Calculating sequence behavior

The sequence decreases until reaching 11 or lower, where it becomes periodic. The minimal nn such that xn+2=xnx_{n+2} = x_n occurs at n=128n = 128. The pattern stabilizes at 3 once xnx_n hits a value below or equal to 11, following the rule of absolute differences and reaching periodicity.

Evaluating consistency in formulae

There's a discrepancy when computing the value of rr using different methods. The two methods for calculating rr gave values that don't match: 4.15 versus 2.35. Upon reviewing the steps, it seems the approach using the intersection formula for xCx_C could be the cause of the inconsistency. I need to triple-check orientation assumptions.

Checking consistency in r and α

After recomputing, it seems the previously derived r2.35r \approx 2.35 was incorrect. The current calculations suggest r4.15r \approx 4.15 aligns with both the BC length of 3 and the angle α59\alpha \approx 59^\circ. This resolves the conflicts from earlier and shows consistency with the correct formulae. Now I’ll continue checking the next length calculation for CDCD.

Recomputing segment CD and calculations

I need to compute the length of segment CD correctly now, using consistent trigonometry. Using α ≈ 59°, I can calculate t23 based on the angle differences between the normals. By recalling the formula, this leads to side BC = r (1 + tan(φ23/2)). This simplifies to 3 = r * (1 + t23) and allows me to calculate t23 = 3/r - 1.

Recomputing r and verifying results

I’ve got two different values for r, one around 2.35 and the other around 4.15, and these don't match. Let's go step by step to figure out which computation has issues. It seems like the earlier approach using line intersection might have an algebra mistake. The results shouldn't conflict, so I'm recalculating carefully to ensure accuracy.

Reevaluating r with new calculations

I’m rechecking my computation for r, especially since I have two conflicting results: 2.35 from one method and 4.15 from another. I’ve revised the intersection equation, where assuming x_C = r - 3 works. After reworking the math and following the tangent approach, I found r ≈ 4.149, which matches BC = 3.

Checking side length formula

I calculated r based on BC and the tangential formula, but I’m getting conflicting values (2.35 versus 4.15). The formula seems correct, but there’s a mismatch in angles. After checking the angle between normals and recomputing with adjustments, I found the formula holds. It seems the earlier calculation mismatch could stem from a sign or angle misinterpretation.

Investigating coordinate issues

I’m calculating the length BC, and I’m running into conflicting values for r derived from different methods. There seems to be an error with how I’m ordering the lines and normals, which is causing confusion. I’ll need to revisit the interpretation of the normal vectors for consistency, especially with signs and orientations in the coordinate system.

Thought for 11m 26s

Answer

Отлично, разбираем по порядку — кратко и по делу.

Задание 8 (24 ящика)

Обозначим через sis_i (для i=1,,23i=1,\dots,23) сколько раз мы делаем операцию с ii-м ящиком.
Изначально чётность: нечётные ящики — 45 (нечёт), чётные — 46 (чёт). После операции на ii меняется чётность ящиков ii и i+1i+1.

Финиш: в ящиках 1..231..23 все числа чётны (24-й неважен). По чётности

s11,sisi1pi (i2), где pi={1,i нечётный0,i чётный.s_1\equiv1,\quad s_i\equiv s_{i-1}\oplus p_i\ (i\ge2),\ \text{где }p_i=\begin{cases}1,&i\text{ нечётный}\\0,&i\text{ чётный.}\end{cases}

Отсюда минимальные sis_i — это 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,\dots (по модулю 2), а значит

минимум операций=#{i23:si=1}=12.\textbf{минимум операций}= \#\{i\le23: s_i=1\}=12.

Для максимума заметим, что дважды подряд нажать на один и тот же ящик можно лишь «подкладывая» шарик справа налево соседней операцией на (i1)(i-1). Это даёт ограничение

s11,sisi1+pi(i2).s_1\le 1,\quad s_i\le s_{i-1}+p_i\quad(i\ge2).

Достижимый максимум получается при равенстве во всех шагах:

simax=i2 (1,1,2,2,3,3,),s_i^{\max}= \left\lceil\frac{i}{2}\right\rceil \ (1,1,2,2,3,3,\dots),

и тогда

максимум операций=i=123i2=(1+1)+(2+2)++(11+11)+12=132+12=144.\textbf{максимум операций}= \sum_{i=1}^{23}\Big\lceil\frac{i}{2}\Big\rceil = (1+1)+(2+2)+\cdots+(11+11)+12=132+12=\boxed{144}.

Ответ по №8: минимально 12, максимально 144.


Задание 5 (описанный четырёхугольник, т.е. около окружности)

Пусть у четырёхугольника есть вписанная окружность радиуса rr. Обозначим углы между соседними внешними нормалями к касательным через φ\varphi; тогда длина стороны с нормалью uu равна

side=r(tanφслева2+tanφсправа2).\text{side}=r\big(\tan\tfrac{\varphi_{\text{слева}}}{2}+\tan\tfrac{\varphi_{\text{справа}}}{2}\big).

Дано ABC=90φ12=90\angle ABC=90^\circ\Rightarrow \varphi_{12}=90^\circ и ACD=90\angle ACD=90^\circ, т.е. диагональ ACAC перпендикулярна CDCD, а значит ACAC параллельна нормали к CDCD.

Расположим касательные так, что ABABx=rx=r, BCBCy=ry=r (тогда B=(r,r)B=(r,r)). Из AB=5AB=5, BC=3BC=3 и условия ACnCDAC\parallel \mathbf n_{CD} получаем направление нормали к CDCD как вектор (3,5)(3,5), откуда

tanα=53,tanφ232=tan(90α2)=3453.\tan\alpha=\frac{5}{3},\qquad \tan\frac{\varphi_{23}}{2}= \tan\Big(\frac{90^\circ-\alpha}{2}\Big)=\frac{\sqrt{34}-5}{3}.

Тогда из BC=r(1+tanφ232)=3BC=r\big(1+\tan\frac{\varphi_{23}}{2}\big)=3 находим

r=31+3453=33423=9342=310(34+2).r=\frac{3}{1+\frac{\sqrt{34}-5}{3}}=\frac{3}{\frac{\sqrt{34}-2}{3}}=\frac{9}{\sqrt{34}-2} =\frac{3}{10}(\sqrt{34}+2).

Далее из AB=r(1+tanφ412)=5AB=r\big(1+\tan\frac{\varphi_{41}}{2}\big)=5 находим tanφ412\tan\frac{\varphi_{41}}{2}, и используя

φ12+φ23+φ34+φ41=360φ342=135φ23+φ412,\varphi_{12}+\varphi_{23}+\varphi_{34}+\varphi_{41}=360^\circ \quad\Rightarrow\quad \frac{\varphi_{34}}{2}=135^\circ-\frac{\varphi_{23}+\varphi_{41}}{2},

простая алгебра даёт

tanφ342=342.\tan\frac{\varphi_{34}}{2}=\frac{\sqrt{34}}{2}.

Тогда

CD=r ⁣(tanφ232+tanφ342)=r ⁣(3453+342)=152.CD=r\!\left(\tan\frac{\varphi_{23}}{2}+\tan\frac{\varphi_{34}}{2}\right) =r\!\left(\frac{\sqrt{34}-5}{3}+\frac{\sqrt{34}}{2}\right) =\boxed{\frac{15}{2}}.

Задание 3 (рекурсия xn+1=xn11x_{n+1}=|x_n-11|, x1=1400x_1=1400)

Пока xn11x_n\ge 11, имеем xn+1=xn11x_{n+1}=x_n-11 — просто уменьшаем на 11.
Ищем первый nn, когда xn11x_n\le 11; тогда сразу xn+2=xnx_{n+2}=x_n.

xn=140011(n1)x_n=1400-11(n-1). Нужна минимальная nn с 140011(n1)111400-11(n-1)\le 11:

11(n1)1389  n1127  n=128.11(n-1)\ge 1389\ \Rightarrow\ n-1\ge127\ \Rightarrow\ n=128.

И действительно: x128=3x_{128}=3, x129=8x_{129}=8, x130=3=x128x_{130}=3=x_{128}.

Ответ по №3: 128\boxed{128}.

Share this Q&A