Толя задумал два квадратных трёхчлена. Корни перво...

Created on: October 14, 2025

Answered using GPT-5 Thinking by Chat01

Question

Толя задумал два квадратных трёхчлена. Корни первого трёхчлена равны 2 и 4, а один из двух корней второго трёхчлена равен -3. Также известно, что графики трёхчленов пересекаются в двух точках: одна из них имеет координаты (6, 7), а вторая лежит на оси ординат.
Найдите ординату второй точки пересечения графиков.
Найдите произведение корней второго трёхчлена.

Thought

Solving math problem

I need to solve for a y-coordinate intersection. The problem gives two quadratic polynomials. The first polynomial has roots at 2 and 4, and the second polynomial has one root at -3 and one unknown. The graphs intersect at the points (6,7) and another point on the y-axis. I need to find the y-value of the second intersection.

Finding product of roots and solving for variables

I need to find the product of the roots of the second polynomial, which is (-3) * r. The coefficient doesn’t affect this, so I just need to figure out r. I can use the given conditions like the intersection at (6,7) to solve for the unknowns like a, b, and r. I already know a = 7/8.

Checking intersections and calculating coordinates

I’m analyzing the intersection points. For the first polynomial, f(0) = 7 when a = 7/8. Since f(x) is symmetrical around x=3, the y-coordinate at x=0 is also 7. The second polynomial, g(0), should also be 7, so I’ll need to solve for the constant b and r to match this.

Solving for unknowns

I’ve derived two equations from the intersections. Using these, I solve for b and r. By substituting one into the other, I find r = 9. The product of the roots of the second polynomial is (-3) * 9 = -27. The y-coordinate of the second intersection point is 7.

Thought for 25s

Answer

Пусть
f(x)=a(x2)(x4)f(x)=a(x-2)(x-4) — первый трёхчлен,
g(x)=b(x+3)(xr)g(x)=b(x+3)(x-r) — второй (его корни 3-3 и rr).

Точка пересечения (6,7)(6,7):

f(6)=a(4)(2)=8a=7a=78.f(6)=a\cdot(4)(2)=8a=7 \Rightarrow a=\frac{7}{8}.

Точка на оси OyOy имеет x=0x=0, её ордината

f(0)=a(2)(4)=8a=7.f(0)=a( -2)( -4)=8a=7.

Значит ордината второй точки пересечения равна 7\boxed{7}.

Для второго трёхчлена:

g(6)=9b(6r)=7,g(0)=3rb=7.g(6)=9b(6-r)=7,\qquad g(0)=-3rb=7.

Делим первое равенство на второе:

9b(6r)3rb=1    3(6r)r=1    r=9.\frac{9b(6-r)}{-3rb}=1 \;\Rightarrow\; -\frac{3(6-r)}{r}=1 \;\Rightarrow\; r=9.

Произведение корней второго трёхчлена: (3)9=27(-3)\cdot 9=\boxed{-27}.

Share this Q&A