In triangle ABC, angles BAC and BCA = 80°, AB= BC ...
Created on: October 11, 2025
Answered using GPT-5 Thinking by Chat01
Created on: October 11, 2025
Answered using GPT-5 Thinking by Chat01
In triangle ABC, angles BAC and BCA = 80°, AB= BC = 1/(2cos10°-√3). On side AB, there is a point E and on side BC, there is a point D, angle CAD = 50°, and angle ACE = 60°. Find ED
pythonimport sympy as sp sp.nsimplify(1/(2*sp.cos(sp.rad(10)) - sp.sqrt(3))) 1/(-sqrt(3) + 2*cos(pi/18))
pythonimport sympy as sp deg = sp.pi/180 b = 1/(2*sp.cos(10*deg) - sp.sqrt(3)) b_n = sp.N(b,50) b_n 4.2093796195361659048780412331808185696886254299303
pythonimport sympy as sp deg = sp.pi/180 b = sp.nsimplify(1/(2*sp.cos(10*deg) - sp.sqrt(3))) # Coordinates A = sp.Matrix([b, 0]) B = sp.Matrix([0, 0]) C = sp.Matrix([b*sp.cos(20*deg), b*sp.sin(20*deg)]) # Define function to rotate a vector by angle theta def rotate(v, theta): R = sp.Matrix([[sp.cos(theta), -sp.sin(theta)], [sp.sin(theta), sp.cos(theta)]]) return R*v # Compute E: line from C making angle 60° with CA CA = A - C # Two possible directions: rotate CA by +60° or -60° u1 = rotate(CA, 60*deg) u2 = rotate(CA, -60*deg) # Intersect lines C + t*u with y=0 t1 = sp.solve(sp.Eq((C + sp.Symbol('t')*u1)[1], 0), sp.Symbol('t')) t2 = sp.solve(sp.Eq((C + sp.Symbol('t')*u2)[1], 0), sp.Symbol('t')) t1, t2 ([2*sin(pi/9)/(-sqrt(3) + 2*cos(pi/18))], [2*sin(pi/9)/(-2*sin(2*pi/9) + sqrt(3))])
pythont_sym = sp.Symbol('t') u1 = sp.simplify(u1) u2 = sp.simplify(u2) t1 = t1[0] t2 = t2[0] E1 = sp.simplify(C + t1*u1) E2 = sp.simplify(C + t2*u2) sp.N(E1), sp.N(E2), sp.N(b) (Matrix([ [7.91104593312946], [ 0]]), Matrix([ [2.23976411351175], [ 0]]), 4.20937961953617)
python# Direction from A AC = C - A v1 = rotate(AC, 50*deg) # rotate CCW from AC by +50 v2 = rotate(AC, -50*deg) # rotate CW by -50 # Param lines: L1 = A + u*v1; L2 = A + u*v2 u = sp.Symbol('u', real=True) s = sp.Symbol('s', real=True) lineBC = B + s*(C - B) # Solve for intersection with BC: find u and s s.t. A + u * v? = lineBC sol1 = sp.solve(sp.Eq(A + u*v1, lineBC), [u, s], dict=True) sol2 = sp.solve(sp.Eq(A + u*v2, lineBC), [u, s], dict=True) sol1, sol2 ([{s: -1 - 16*sin(pi/9)**4 + 16*sin(pi/9)**2, u: -40*sin(pi/9)**3 + 32*sin(pi/9)**5 + 8*sin(pi/9)}], [{s: 2 - 4*sin(pi/9)**2, u: -40*sin(pi/9)**3 + 32*sin(pi/9)**5 + 10*sin(pi/9)}])
pythonsol1_num = {k: sp.N(v) for k,v in sol1[0].items()} sol2_num = {k: sp.N(v) for k,v in sol2[0].items()} sol1_num, sol2_num ({s: 0.652703644666139, u: 1.28557521937308}, {s: 1.53208888623796, u: 1.96961550602442})
pythons_val = sol1[0][s] D = sp.simplify(lineBC.subs(s, s_val)) E = sp.simplify(E2) ED_len = sp.sqrt(sp.simplify(sp.sum((D - E)**2))) sp.N(D), sp.N(E), sp.N(ED_len,50)
pythonED_len = sp.sqrt(sp.simplify(((D - E).dot(D - E)))) sp.N(D), sp.N(E), sp.N(ED_len,50) (Matrix([ [ 2.58178425683742], [0.939692620785908]]), Matrix([ [2.23976411351175], [ 0]]), 1.0000000000000000000000000000000000000000000000000)
pythonimport sympy as sp deg=sp.pi/180 x=sp.cos(20*deg) y=sp.cos(40*deg) S = sp.simplify(1/(4*x**2) + 1/(4*sp.cos(40*deg)**2) - 1/(2*sp.cos(40*deg))) sp.N(S,50) 0.056436985952271091082210843128870364384253903149490
pythonb = 1/(2*sp.cos(10*deg) - sp.sqrt(3)) float(b**2 * S) 1.0
pythondelta = sp.simplify(S - (2*sp.cos(10*deg) - sp.sqrt(3))**2) sp.simplify(delta) sp.N(delta,50) 0.e-168
ED = 1
Sketch of solution
Let ∠A = ∠C = 80°, so ∠B = 20°. Put (the problem gives ).
From and , we get .
Also .
Hence in the base angles at and are equal, so .
By the sine rule:
From and , we get .
In : .
By the sine rule:
The angle between and at is . Apply the cosine law in :
Using , , and (plus ), the bracket simplifies to
Therefore
With the given , we get , hence .