To help improve her math, Kudryavka is given a set...
Created on: August 10, 2025
Answered using GPT-5 Thinking by Chat01
Created on: August 10, 2025
Answered using GPT-5 Thinking by Chat01
To help improve her math, Kudryavka is given a set S
that consists of n
distinct positive integers.
Initially, her score is 1
. She can perform an arbitrary number of the following operations on the set if it is not empty:
Let the minimum value of S
be m
.
Multiply her score by m
.
Remove m
from S
.
For every integer i
such that 1≤i<m
, add i
to the set S
. It can be shown that no duplicates are added during this step.
She is addicted to performing operations, but after k
operations, she realizes she forgot her score. Please help her determine her score, modulo 109+7
.
Input
Each test contains multiple test cases. The first line contains the number of test cases t
(1≤t≤104
). The description of the test cases follows.
The first line of each test case contains two integers n
and k
(1≤n≤2⋅105
, 1≤k≤109
).
The second line of each test case contains n
integers s1,s2,…,sn
(1≤si≤109
, si≠sj
) — the elements of the initial set S
. It is guaranteed that the set S
is not empty before each of the k
operations is performed.
It is guaranteed that the sum of n
over all test cases does not exceed 2⋅105
.
Output
For each test case, output an integer indicating the answer modulo 109+7
.
one thing I noticed removing x from S will lead to next 2^x-1 extra operations like this 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1 when x=5
can you code me in java
python# Let's simulate the process and compare with block-based product method. from collections import Counter MOD=10**9+7 def simulate(S, k): S=set(S) score=1 for step in range(k): m=min(S) score = (score * m) % MOD S.remove(m) for i in range(1, m): if i not in S: S.add(i) return score def block_product(S, k): S=sorted(S) rem=k ans=1 # precompute B[m] for m<=29 B=[1]*30 for m in range(1,30): prod=1 for r in range(1, m+1): prod = (prod * pow(r, 1<<(m-r), MOD)) % MOD B[m]=prod # process blocks for a in S: if rem==0: break m=a-1 if m<0: raise if m>=30: # partial always c=rem ans = (ans * a) % MOD # first element X=c-1 if X>0: maxr = min(m, X.bit_length()) for r in range(1, maxr+1): cnt = X//(1<<(r-1)) - X//(1<<r) if cnt: ans = (ans * pow(r, cnt, MOD)) % MOD rem=0 break block_len = 1<<m if block_len<=rem: ans = (ans * a) % MOD ans = (ans * B[m]) % MOD rem -= block_len else: # partial c=rem ans = (ans * a) % MOD X=c-1 if X>0: maxr = min(m, X.bit_length()) for r in range(1, maxr+1): cnt = X//(1<<(r-1)) - X//(1<<r) if cnt: ans = (ans * pow(r, cnt, MOD)) % MOD rem=0 break return ans # test random small cases import random def test(): for _ in range(2000): n=random.randint(1,5) S=random.sample(range(1,12), n) # small values to simulate # ensure k <= total operations, which equals sum over blocks length 2^{a-1} total=sum(1<<(a-1) for a in sorted(S)) for k in range(1, min(40, total)+1): s=simulate(S, k) b=block_product(S, k) if s!=b: return S,k,s,b,total return "All good" test() 'All good'
you’re on the right track with the pattern—just one tiny correction:
after you remove x
, the number of extra operations to exhaust the numbers < x
is 2^(x-1) - 1
(not 2^x - 1
).
e.g. for x = 5
the next pops are 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1
(length 2^4 - 1 = 15
).
the key trick for fast math: sort the initial set a1 < a2 < … < an
.
The pop sequence is block-by-block:
ai
has length 2^(ai-1)
and equals: [ai]
then a canonical sequence T(ai-1)
of length 2^(ai-1)-1
.T(m)
, the value r (1 ≤ r ≤ m)
appearsfloor(X/2^(r-1)) − floor(X/2^r)
times in the first X
terms.O(log X)
bases (≤ ~30 for X ≤ 1e9
).So we can eat whole blocks while k
remains; once we enter a partial block we multiply
ai
and then the counts above for X = remaining - 1
.
Here’s a clean, fast Java solution (O(n log k) per test). It never simulates the process:
javaimport java.io.*; import java.util.*; public class Main { static final long MOD = 1_000_000_007L; static final int MAX_M_FULL = 29; // because 2^30 > 1e9 (k max) static long[] blockTailProd = new long[MAX_M_FULL + 1]; // B[m] = ∏_{r=1..m} r^(2^(m-r)) mod MOD public static void main(String[] args) throws Exception { FastScanner fs = new FastScanner(System.in); precomputeBlockTails(); StringBuilder out = new StringBuilder(); int t = fs.nextInt(); while (t-- > 0) { int n = fs.nextInt(); long k = fs.nextLong(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = fs.nextInt(); Arrays.sort(a); long remaining = k; long ans = 1; for (int ai : a) { if (remaining == 0) break; int m = ai - 1; // T(m) length is 2^m - 1, block length is 2^m if (m >= MAX_M_FULL + 1) { // This block is longer than any possible remaining (since k ≤ 1e9) ans = mul(ans, ai); long X = remaining - 1; // we will take X terms from T(m) if (X > 0) ans = mul(ans, productPrefixT(m, X)); remaining = 0; break; } else { long blockLen = 1L << m; // safe for m ≤ 29 if (blockLen <= remaining) { // take the full block: ai * B[m] ans = mul(ans, ai); ans = mul(ans, blockTailProd[m]); remaining -= blockLen; } else { // take a partial prefix of length 'remaining' ans = mul(ans, ai); long X = remaining - 1; // terms taken from T(m) if (X > 0) ans = mul(ans, productPrefixT(m, X)); remaining = 0; break; } } } // Problem guarantees enough operations exist (set is non-empty before each of the k ops) out.append(ans % MOD).append('\n'); } System.out.print(out.toString()); } // Precompute B[m] = ∏_{r=1..m} r^(2^(m-r)) for m = 0..29 static void precomputeBlockTails() { blockTailProd[0] = 1; // T(0) empty for (int m = 1; m <= MAX_M_FULL; m++) { long prod = 1; for (int r = 1; r <= m; r++) { long exp = 1L << (m - r); // ≤ 2^28 for m ≤ 29 prod = mul(prod, modPow(r, exp)); } blockTailProd[m] = prod; } } // Product of first X terms of T(m): ∏_{r=1..min(m, floor(log2 X)+1)} r^{ floor(X/2^{r-1}) - floor(X/2^r) } static long productPrefixT(int m, long X) { long res = 1; long denomPrev = 1; // 2^{r-1} long denom = 2; // 2^r for (int r = 1; r <= m && denomPrev <= X; r++) { long cnt = X / denomPrev - X / denom; if (cnt > 0) res = mul(res, modPow(r, cnt)); denomPrev <<= 1; denom <<= 1; } return res; } static long mul(long a, long b) { return (a * b) % MOD; } static long modPow(long base, long exp) { long res = 1 % MOD; long p = base % MOD; long e = exp; while (e > 0) { if ((e & 1L) != 0) res = (res * p) % MOD; p = (p * p) % MOD; e >>= 1; } return res; } // Fast scanner static final class FastScanner { private final InputStream in; private final byte[] buffer = new byte[1 << 16]; private int ptr = 0, len = 0; FastScanner(InputStream is) { in = is; } private int read() throws IOException { if (ptr >= len) { len = in.read(buffer); ptr = 0; if (len <= 0) return -1; } return buffer[ptr++]; } long nextLong() throws IOException { long sgn = 1, x = 0; int c = read(); while (c <= ' ') { if (c == -1) return Long.MIN_VALUE; c = read(); } if (c == '-') { sgn = -1; c = read(); } while (c > ' ') { x = x * 10 + c - '0'; c = read(); } return x * sgn; } int nextInt() throws IOException { return (int) nextLong(); } } }
ai
has length 2^(ai-1)
and equals [ai] + T(ai-1)
.T(m)
, the count of a value r
is
⌊X/2^(r-1)⌋ − ⌊X/2^r⌋
— i.e., how many numbers t ≤ X
have exactly r-1
trailing zeros.k ≤ 1e9
, any partial block needs at most ~30 bases, so we can multiply them fast with modular exponentiation.If you want, I can add a tiny self-check harness or comments to print intermediate counts for debugging.