donner moi formule delta

Created on: June 5, 2025

Answered using O3 by Chat01

Question

donner moi formule delta

Thought

Providing the delta formula

The user asked for the "formule delta," likely referring to the discriminant in a quadratic equation. The formula is: Δ = b² - 4ac, used in solving ax² + bx + c = 0. Since the user used French, I will explain it in the same language. The discriminant determines the nature of the roots: if Δ > 0, two real solutions; Δ = 0, one real solution; and Δ < 0, two complex solutions. It's a key step in solving quadratics!

Thought for 5 seconds

Answer

Voici la formule du discriminant ( Δ ), couramment appelée « delta », pour une équation du second degré
ax2+bx+c=0ax^{2}+bx+c=0 (avec a0a \neq 0) :

  Δ=b24ac  \boxed{\;\Delta = b^{2} - 4ac\;}

Une fois Δ calculé :

Valeur de ΔNature des racinesFormules des solutions
Δ > 0Deux racines réelles distinctesx1=bΔ2ax_{1} = \dfrac{-b - \sqrt{\Delta}}{2a}, x2=b+Δ2ax_{2} = \dfrac{-b + \sqrt{\Delta}}{2a}
Δ = 0Une racine réelle doublex=b2ax = \dfrac{-b}{2a}
Δ < 0Deux racines complexes conjuguéesx1,2=b±iΔ2ax_{1,2} = \dfrac{-b \pm i\sqrt{-\Delta}}{2a}

Exemple : pour 2x23x5=02x^{2} - 3x - 5 = 0

  • a=2,  b=3,  c=5a = 2,\; b = -3,\; c = -5
  • Δ=(3)24×2×(5)=9+40=49\Delta = (-3)^{2} - 4 \times 2 \times (-5) = 9 + 40 = 49
  • Δ > 0 ⇒ deux racines réelles
    x1=374=1,x2=3+74=2.5x_{1} = \dfrac{3 - 7}{4} = -1,\quad x_{2} = \dfrac{3 + 7}{4} = 2.5

Voilà !

Share this Q&A