阅读文章,用中文回答问题,如果将文中的$\alpha>1$改为$2>\alpha>1$,还是否成立,...

Created on: May 21, 2025

Answered using O3 by Chat01

Question

An Existence Result for a Generalized Quasilinear SchrödingerEquation with Nonlocal Term.pdf

阅读文章,用中文回答问题,如果将文中的α>1\alpha>1改为2>α>12>\alpha>1,还是否成立,若不成立哪里出错,需要怎么修改,请详细说明

Thought

Clarifying existence condition

The user is asking if the existence result still holds if we change the condition α>1\alpha > 1 to 1<α<21 < \alpha < 2. The original article assumes α>1\alpha > 1, and changes in the proof may arise due to the condition limsg(s)sα1=β>0\lim_{|s| \to \infty} \frac{g(s)}{|s|^{\alpha-1}} = \beta > 0. This assumption might affect other parts, such as the range of pp. I'll need to analyze the steps in the proof to determine if the result still stands with 1<α<21 < \alpha < 2 and where modifications would be necessary.

Analyzing exponent condition

I need to check where the condition α>1 is used versus when α≥something. The constant α shows up in the proof's Lemma 2, where they bound λa and use an inequality based on α>1. Also, in later steps, the values of p and α are tightly connected, especially in conditions where p/α ≥ 2. I'll have to verify if smaller values of α cause the exponent to exceed the required range (between 2 and 2*), as this could lead to problems. For example, using α<1 might violate the upper bound.

Thought for 39 seconds

Answer

结论先行

把文中的假设

α>1\alpha>1

细化为

2>α>12>\alpha>1

并不会破坏 论文主定理(定理 1)的成立;所有关键估计在 1<α<21<\alpha<2 的情况下依旧有效,证明无需本质改动。下面按照论文证明的结构,逐条说明为何不会出错,以及各处对 α\alpha 的要求是什么。


1. 文章对 α\alpha 的全部用法

用到的位置原始条件/结论α\alpha 的真正需求
定义条件  $\displaystyle\lim_{s\to\infty}\frac{g(s)}{
Lemma 2 (1)-(3) 不等式
G(s)g(s)sαG(s)G(s)\le g(s)s\le\alpha G(s)证明过程中只需要 α>1\alpha>1α\alpha 作为常数因子出现。α(1,2)\alpha\in(1,2) 仍成立。
p 的取值区间
2αp2α(Nμ)N22\alpha\le p \le \dfrac{2\alpha(N-\mu)}{N-2}下界保证 p/α2p/\alpha\ge2,上界保证若干 Sobolev 指数小于临界指数。α<2\alpha<2 时,下、上界同时随 α\alpha 同步缩小,不影响后续估计。
Step 1 中对拉格朗日乘子
maaαλaαmaa\dfrac{m_a}{a^\alpha}\le\lambda_a\le\dfrac{\alpha m_a}{a} 的夹估α\alpha 只做常数系数;需 α>1\alpha>1 以保证正数并可取倒数。不受 α<2\alpha<2 影响。
Step 2 关键不等式 (31) ~(32)
需要 2Npα(2Nμ)>2\displaystyle \frac{2Np}{\alpha(2N-\mu)}>2<2<2^*,并用到 p/α2p/\alpha\ge2这两个不等式在原始区间内与 α\alpha 无关α\alpha 在上下界同时被抵消),详见下节计算。仍满足。

2. 关键指数与 α\alpha 的脱钩

tα:=2Npα(2Nμ),pmax=2α(Nμ)N2,pmin=2α.t_\alpha:=\frac{2Np}{\alpha(2N-\mu)} ,\qquad p_{\max}=\frac{2\alpha(N-\mu)}{N-2},\quad p_{\min}=2\alpha.
  • 上界: 带入 pmaxp_{\max}

    tαmax=4N(Nμ)(N2)(2Nμ),t_\alpha^{\max}= \frac{4N(N-\mu)}{(N-2)(2N-\mu)},

    α\alpha 完全无关,并且可直接验证

    tαmax<2NN2=2.t_\alpha^{\max}<\frac{2N}{N-2}=2^* .
  • 下界: 带入 pminp_{\min}

    tαmin=4N2Nμ>2,t_\alpha^{\min}= \frac{4N}{2N-\mu}>2 ,

    同样与 α\alpha 无关。
    因而 (31)-(32) 中“指数在 (2,2)(2,2^*) 之间”的要求天然满足,不论 α\alpha 是否小于 2。


3. 可能担心的两点

  1. p/α2p/\alpha\ge2
    随着 α1\alpha\downarrow1,下界 p2αp\ge2\alpha 同时下移,但比值

    pα  2αα=2\frac{p}{\alpha}\ \ge\ \frac{2\alpha}{\alpha}=2

    恒为 2\ge2,满足 Step 2 里使用 Hölder–Young 不等式时“指数 2\ge2”的要求。

  2. Lemma 2 (3) 的估计
    sα(α/β)G(s)\lvert s\rvert^\alpha\le(\alpha/\beta)\,|G(s)| 中因为 α(1,2)\alpha\in(1,2) 仍大于 1,使用同样的积分分部计算即可推导,不需新假设。


4. 如果真的要把“α>1\alpha>1”写成“1<α<21<\alpha<2

  • 显式修改处:仅需在全文假设列表里把
    “for some α>1\alpha>1” 改成 “for some 1<α<21<\alpha<2”。
    其余所有不等式、常数 C(α)C(\alpha)、下界 2αp2\alpha\le p 与上界 2α(Nμ)/(N2)2\alpha(N-\mu)/(N-2) 自动随之调整,无需额外证明。

  • 证明文本中的字面处(例如 Step 2 末尾 “因为 p/α2>1p/\alpha\ge2>1”):保持原句即可;条件依旧满足。


总结

将假设细化为 2>α>12>\alpha>1 不影响 定理 1 及其证明的任何环节。
只要同步把涉及 α\alpha 的参数区间(尤其是 pp 的上下界)按新 α\alpha 重新书写,所有估计依然成立,结论——方程在大参数 λn\lambda_n\to\infty 时存在非平凡弱解——保持不变。

Question

阅读文章,用中文回答问题,如果将文中的α>1\alpha>1改为2>α>12>\alpha>1,并且求dds(G1(s)g(G1(s)))=1g2(G1(s))(1G1(s)g(G1(s))g(G1(s)))>0,\frac{d}{ds}\left(\frac{G^{-1}(s)}{g(G^{-1}(s))}\right)=\frac{1}{g^2(G^{-1}(s))}\left(1-\frac{G^{-1}(s)g'(G^{-1}(s))}{g(G^{-1}(s))}\right)>0,,请给出详细过程

Thought

Explaining derivative computation in Chinese

For this problem, the user is asking for the detailed calculation of the derivative:

dds(G1(s)g(G1(s)))\frac{d}{ds} \left( \frac{G^{-1}(s)}{g(G^{-1}(s))} \right)

with alpha between 1 and 2. The steps involve applying the chain rule, using the fact that G(s)=g(s)G'(s) = g(s), and assuming conditions like g(u)0g'(u) \geq 0 and (α1)g(u)g(u)u(\alpha - 1)g(u) \geq g'(u) u. Based on these, we show that the derivative is strictly positive when α\alpha is in the range (1,2)(1, 2).

Confirming derivative steps

I need to cite the PDF I got earlier for Lemma 2. We don't need a web search since the file content is enough for reference.

For the derivative, I derived that H(s)=G1(s)g(G1(s))H(s) = \frac{G^{-1}(s)}{g(G^{-1}(s))}, and applying the chain rule, we get:

dH/ds=(g(u)ug(u))g3(u)dH/ds = \frac{(g(u) - u g'(u))}{g^3(u)}

Wait, there's a discrepancy in the factor of gg. I need to confirm the correct calculation, checking the formula from the PDF.

Thought for 18 seconds

Answer

推导思路

  1. 记号转换

    H(s)  :=  G1(s)g ⁣(G1(s)),u  :=  G1(s)  (  s=G(u),  G(u)=g(u)).H(s)\;:=\;\frac{G^{-1}(s)}{g\!\bigl(G^{-1}(s)\bigr)},\qquad u\;:=\;G^{-1}(s)\;(\Longrightarrow\;s=G(u),\;G'(u)=g(u)).
  2. 一阶求导(链式法则)

    dHds  =  dHdu    duds.\frac{\mathrm dH}{\mathrm ds} \;=\; \frac{\mathrm dH}{\mathrm du}\;\cdot\;\frac{\mathrm du}{\mathrm ds}.
    • 先求 uu-方向导数 dHdu  =  ddu ⁣(ug(u))  =  g(u)ug(u)g2(u).\frac{\mathrm dH}{\mathrm du} \;=\; \frac{\mathrm d}{\mathrm du}\!\Bigl(\tfrac{u}{g(u)}\Bigr) \;=\; \frac{g(u)-u\,g'(u)}{g^{2}(u)} .
    • 再换回 ss-方向(因为 duds=1g(u)\displaystyle\frac{\mathrm du}{\mathrm ds}=\frac1{g(u)} dHds  =  g(u)ug(u)g3(u)  =  1ug(u)g(u)g2(u). \frac{\mathrm dH}{\mathrm ds} \;=\; \frac{g(u)-u\,g'(u)}{g^{3}(u)} \;=\; \frac{1-\dfrac{u\,g'(u)}{g(u)}}{g^{2}(u)} .
  3. 符号判断

    • 由文章中的基本假设 (α1)g(u)    ug(u),uR, \bigl(\alpha-1\bigr)\,g(u)\;\ge\;u\,g'(u),\qquad\forall\,u\in\mathbb R, 等价于 ug(u)g(u)    α1. \frac{u\,g'(u)}{g(u)}\;\le\;\alpha-1 .
    • 若把条件细化为 1<α<21<\alpha<2,则 α1(0,1)\alpha-1\in(0,1),于是 1ug(u)g(u)    1(α1)  =  2α  >  0. 1-\frac{u\,g'(u)}{g(u)} \;\ge\; 1-(\alpha-1) \;=\; 2-\alpha \;>\;0 .
    • 再考虑 g(u)>0g(u)>0(由 g:RR+g:\mathbb R\to\mathbb R_{+}),得到 dds(G1(s)g(G1(s)))  =  1G1(s)g(G1(s))g(G1(s))g2 ⁣(G1(s))  >  0. \frac{\mathrm d}{\mathrm ds}\left(\frac{G^{-1}(s)}{g\bigl(G^{-1}(s)\bigr)}\right) \;=\; \frac{1-\dfrac{G^{-1}(s)\,g'\bigl(G^{-1}(s)\bigr)}{g\bigl(G^{-1}(s)\bigr)}}{g^{2}\!\bigl(G^{-1}(s)\bigr)} \;>\;0 .
  4. 结论
    在新的参数范围 1<α<21<\alpha<2 下,上式严格为正,说明函数

    s    G1(s)g ⁣(G1(s)) s\;\longmapsto\;\frac{G^{-1}(s)}{g\!\bigl(G^{-1}(s)\bigr)}

    单调递增。该单调性后来被用来保证某些倒函数或不等式的合法性;若只知道 “α>1\alpha>1” 而不给出上界,则无法保证 α1<1\alpha-1<1,从而无法确定导数符号,这就是必须把条件收紧到 2>α>12>\alpha>1 的原因。

Question

阅读文章,用中文回答问题,如果将文中的α>1\alpha>1改为2α>12\geq\alpha>1,并且求dds(G1(s)g(G1(s)))=1g2(G1(s))(1G1(s)g(G1(s))g(G1(s)))>0,\frac{d}{ds}\left(\frac{G^{-1}(s)}{g(G^{-1}(s))}\right)=\frac{1}{g^2(G^{-1}(s))}\left(1-\frac{G^{-1}(s)g'(G^{-1}(s))}{g(G^{-1}(s))}\right)>0,,请给出详细过程

Thought

Explaining derivative positivity

The user is asking about the derivative expression, specifically when α\alpha is within the range 1<α21 < \alpha \leq 2. They want to know how the derivative remains greater than zero, particularly at the upper boundary of α=2\alpha = 2. Based on the earlier condition (α1)g(s)g(s)s(\alpha-1)g(s) \geq g'(s)s, the equation suggests that for α=2\alpha = 2, the derivative is non-negative, meaning it could be zero at some boundary points but will generally remain non-negative for α\alpha in (1,2](1,2]. I'll explain all of this in detail in Chinese and reference the article with appropriate citations.

Thought for 21 seconds

Answer

计算步骤

H(s)  =  G1(s)g(G1(s)),u  =  G1(s)    s=G(u),  G(u)=g(u).H(s)\;=\;\frac{G^{-1}(s)}{g(G^{-1}(s))},\qquad u\;=\;G^{-1}(s)\;\Longrightarrow\;s=G(u),\;G'(u)=g(u).

1 . 链式法则求导

dHds=dHdu  duds.\frac{\mathrm dH}{\mathrm ds} =\frac{\mathrm dH}{\mathrm du}\;\frac{\mathrm du}{\mathrm ds}.
  • 对 u 求导

    dHdu  =  ddu ⁣(ug(u))  =  g(u)ug(u)g2(u).\frac{\mathrm dH}{\mathrm du} \;=\;\frac{\mathrm d}{\mathrm du}\!\Bigl(\tfrac{u}{g(u)}\Bigr) \;=\;\frac{g(u)-u\,g'(u)}{g^{2}(u)}.
  • 换回 s 变量duds=1g(u)\displaystyle\frac{\mathrm du}{\mathrm ds}=\frac1{g(u)}

      dds ⁣(G1(s)g(G1(s)))=1ug(u)g(u)g2(u)  .\boxed{\; \frac{\mathrm d}{\mathrm ds}\!\Bigl(\frac{G^{-1}(s)}{g(G^{-1}(s))}\Bigr) =\frac{1-\dfrac{u\,g'(u)}{g(u)}}{g^{2}(u)} \;}.

写成文中记号即

dds ⁣(G1(s)g(G1(s)))=1g2(G1(s))(1G1(s)g(G1(s))g(G1(s))).\frac{d}{ds}\!\Bigl(\frac{G^{-1}(s)}{g(G^{-1}(s))}\Bigr) =\frac{1}{g^{2}(G^{-1}(s))}\Bigl(1-\frac{G^{-1}(s)\,g'(G^{-1}(s))}{g(G^{-1}(s))}\Bigr).

2 . 符号判断

论文假设(见公式 (1) 前的条件)

(α1)g(s)    g(s)s,s0,α>1.(\alpha-1)g(s)\;\ge\;g'(s)\,s,\qquad \forall\,s\ge0, \quad\alpha>1. \qquad

整理得

sg(s)g(s)    α1.\frac{s\,g'(s)}{g(s)}\;\le\;\alpha-1.

于是

1sg(s)g(s)        1(α1)  =  2α.1-\frac{s\,g'(s)}{g(s)} \;\;\ge\;\;1-(\alpha-1)\;=\;2-\alpha.

3 . 讨论 2α>1\mathbf{2\ge\alpha>1}

α\alpha 取值下界 2α2-\alpha导数符号
1<α<21<\alpha<22α>02-\alpha>0严格正
α=2\alpha=22α=02-\alpha=0非负,可能为 0

因此在新的区间

1<α<21<\alpha<2

函数 H(s)H(s) 严格单调递增
α=2\alpha=2 时只能得到

dHds    0,\frac{dH}{ds}\;\ge\;0,

不再保证“>0”。若确实需要严格不等式,可做以下微调之一:

  1. 保留 1<α<21<\alpha<2:把条件写成 2>α>12>\alpha>1,与前一问中结论一致;
  2. 或加强假设:要求 (α1)g(s)  >  g(s)s,s>0,(\alpha-1)g(s)\;>\;g'(s)s,\qquad\forall s>0, 则即使 α=2\alpha=2 也有
    1sg(s)g(s)  >  01-\dfrac{s\,g'(s)}{g(s)}\;>\;0
    导数仍为正。

只要满足上述其一,就可以在全文任何用到“导数 > 0”的地方保持论证成立。

Share this Q&A