#include <bits/stdc++.h> using namespace std; voi...
Created on: May 7, 2025
Created on: May 7, 2025
#include <bits/stdc++.h>
using namespace std;
void solve(){
int n, k;
cin >> n >> k;
textvector<int> ans(n, 0); int val = k-(n-2); if(val<=0){ cout << -1 << "\n"; return; } ans[n-2] = val; ans[n-1] = val*2; for(int i=n-3; i>=0; i--){ ans[i] = --val; } for(int i=0; i<n; i++){ cout << ans[i] << " "; } cout << "\n";
}
int main() {
// your code goes here
int t;
cin >> t;
while(t--){
solve();
}
}
'''
GCD Summation
For an array
A
A of length
N
N, we define
f
(
A
)
f(A) to be the sum of GCDs of its adjacent elements, i.e.
K
f(A)=K.
If multiple valid arrays exist, you may find any of them.
If no valid arrays exist, print
−
1
−1 instead.
Input Format
The first line of input will contain a single integer
T
T, denoting the number of test cases.
The first and only line of each test case contains two space-separated integers
N
N and
K
K – the length of the array and the required value of
f
(
A
)
f(A), respectively.
Output Format
For each test case, on a new line:
K
f(A)=K must hold. The elements of
A
A must be pairwise distinct, i.e.
A
i
≠
A
j
A
i
=A
j
for
i
≠
j
i=j.
If there are multiple valid arrays, you may find any of them.
Constraints
1
≤
T
≤
1
0
5
1≤T≤10
5
2
≤
N
≤
2
⋅
1
0
5
2≤N≤2⋅10
5
1
≤
K
≤
1
0
6
1≤K≤10
6
5
f(A)=gcd(15,54)+gcd(54,8)=3+2=5, as required.
Test case
2
2: It can be proved that there does not exist any array of length
5
5, with distinct integers between
1
1 and
1
0
9
10
9
, such that the sum of adjacent GCDs equals
3
3.
18
f(A)=gcd(9,210)+gcd(210,72)+gcd(72,30)+gcd(30,57)=3+6+6+3=18.
'''
What is the problem with my code for the problem in quotes? Correct it and give me the correct code in my template in cpp
What went wrong?
Your construction is based on the neat observation
f(A) = (N‑2)·1 + val with val = K – (N‑2)
i.e. make every adjacent GCD equal 1 except one special pair
⟨val , 2·val⟩ whose GCD is val.
That idea is perfectly fine, but the loop
cppfor (int i = n-3; i >= 0; --i) ans[i] = --val;
keeps decrementing val
until it reaches 0 or becomes negative whenever
K
is close to its minimum possible value N‑1
.
Consequently you output zero / negative numbers, and sometimes you even
repeat val
— both of which violate the statement (“distinct integers between 1 and 10^9”).
Impossible case – the smallest sum we can ever obtain is N‑1
(all adjacent GCDs equal 1).
If K < N‑1
we print ‑1.
Exactly the minimum (K = N‑1
) – just output consecutive
integers 1 … N
; every pair is coprime ⇒ sum of GCDs = N‑1
.
General case (K > N‑1
)
textx = K – (N‑2) (now x ≥ 2) [A0 … AN‑3] = BASE, BASE+1, …, BASE+(N‑3) // BASE = 3'000'003 AN‑2 = 1 AN‑1 = x AN = 2·x
BASE
block is a stretch of consecutive numbers ⇒ every
GCD inside it is 1;gcd(BASE+(N‑3), 1) = 1
;gcd(1, x) = 1
;gcd(x, 2x) = x
.Hence the total is (N‑3 – 1)·1 + 1 + 1 + x = (N‑2)+x = K
,
all numbers are positive, distinct and ≤ 10^9 (largest is
BASE+(N‑3) < 3.3 × 10^6
).
cpp#include <bits/stdc++.h> using namespace std; using ll = long long; void solve() { ll N, K; // N up to 2·10^5, K up to 10^6 cin >> N >> K; /* impossible ----------------------------------------------- */ if (K < N - 1) { cout << -1 << '\n'; return; } /* N = 2 is a special one‑pair case ------------------------- */ if (N == 2) { cout << K << ' ' << 2 * K << '\n'; // gcd = K return; } /* exactly the minimum sum ---------------------------------- */ if (K == N - 1) { // x would be 1 for (ll i = 1; i <= N; ++i) cout << i << (i == N ? '\n' : ' '); return; } /* general constructive case -------------------------------- */ ll x = K - (N - 2); // x ≥ 2 const ll BASE = 3'000'003; // > 2·10^6, well < 10^9 vector<ll> a; a.reserve(N); /* 1) a block whose consecutive elements are pairwise coprime */ for (ll i = 0; i < N - 3; ++i) a.push_back(BASE + i); // gcd of neighbours = 1 /* 2) a bridging 1 so that gcd(… ,1) and gcd(1,x) are both 1 */ a.push_back(1); /* 3) the special pair whose gcd is x */ a.push_back(x); a.push_back(2 * x); /* output ---------------------------------------------------- */ for (size_t i = 0; i < a.size(); ++i) cout << a[i] << (i + 1 == a.size() ? '\n' : ' '); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int T; cin >> T; while (T--) solve(); return 0; }
This keeps every element within the required range, guarantees pairwise distinctness, and works in O(N) per test‑case — easily fast enough for the given limits.
Hey, instead of the base concept, can you use my concept itself to build the answer? I did not understand the base concept.
Hey, instead of the base concept, can you use my concept itself to build the answer? I did not understand the base concept.
Below is a drop‑in replacement for your file that keeps your original idea—
only one special pair contributes val
to the sum, every other adjacent GCD is 1.
I only fixed the edge cases and the way the first n‑2
numbers are filled.
cpp#include <bits/stdc++.h> using namespace std; using ll = long long; void solve() { ll n, k; cin >> n >> k; /* 1. Impossible when the minimum achievable sum (n‑1) is larger than k */ if (k < n - 1) { cout << -1 << '\n'; return; } /* 2. Trivial minimum‑sum case: consecutive integers 1 … n */ if (k == n - 1) { for (ll i = 1; i <= n; ++i) cout << i << (i == n ? '\n' : ' '); return; } /* 3. General case ------------------------------------------------------ */ ll val = k - (n - 2); // gcd of the last pair (val , 2·val) if (n == 2) { // special when there is only that one pair cout << val << ' ' << 2 * val << '\n'; return; } vector<ll> a; a.reserve(n); /* first n‑3 numbers: consecutive integers starting from 3 (they guarantee gcd=1 with neighbours) */ ll cur = 3; for (int i = 0; i < n - 3; ++i) { while (cur == val || cur == 2 * val) ++cur; // keep all values distinct a.push_back(cur++); } /* the final three numbers: 1, val, 2·val gcd( … , 1) = 1, gcd(1 , val) = 1, gcd(val , 2·val) = val */ a.push_back(1); a.push_back(val); a.push_back(2 * val); /* output --------------------------------------------------------------- */ for (size_t i = 0; i < a.size(); ++i) cout << a[i] << (i + 1 == a.size() ? '\n' : ' '); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t; cin >> t; while (t--) solve(); return 0; }
Your key idea: choose val = K – (N‑2)
, make the last pair
⟨val
, 2·val
⟩ so that their GCD equals val
.
That part is unchanged.
Every other adjacent GCD is forced to 1:
gcd = 1
;gcd(anything, 1) = 1
.Hence
f(A) = (N‑3)·1 // between the leading block + 1 // between last block element and the 1 + val // between val and 2·val = N‑2 + val = K
.
All numbers are distinct and far below 10^9
(k ≤ 10^6 ⇒ 2·val ≤ 2.2 × 10^6
at worst).
So the construction obeys the constraints while following exactly the pattern you originally envisioned.