Solve this math calculus questions step by step Y=...

Created on: April 18, 2025

Answered using O3 by Chat01

Question

Solve this math calculus questions step by step
Y=cos(inx)
Y=(x^2+1)^1/2
Y=(2x+1)^8
Y=e^sinx

Thought

Thought for 14 seconds

Answer

Below are full, line‑by‑line differentiations of the four functions. I keep the notation compact—yy is the dependent variable and xx the independent one.


1. y=cos(nx)y=\cos\bigl(nx\bigr)

Chain rule with the outer function cos(u)\cos(u) and inner function u=nxu = nx.

dydx=ddu[cosu]  dudx=(sinu)(n)=nsin(nx)\frac{dy}{dx} =\frac{d}{du}\bigl[\cos u\bigr]\;\frac{du}{dx} =(-\sin u)\,(n) =-n\sin\bigl(nx\bigr)

2. y=x2+1=(x2+1)1/2y=\sqrt{x^{2}+1}=(x^{2}+1)^{1/2}

Rewrite with an exponent, then apply the chain rule.
Inner u=x2+1u=x^{2}+1, outer u1/2u^{1/2}.

dydx=12(u)1/2dudx=12(x2+1)1/2(2x)=xx2+1\frac{dy}{dx} =\frac{1}{2}(u)^{-1/2}\,\frac{du}{dx} =\frac{1}{2}(x^{2}+1)^{-1/2}\,(2x) =\frac{x}{\sqrt{x^{2}+1}}

3. y=(2x+1)8y=(2x+1)^{8}

Again chain rule.
Inner u=2x+1u=2x+1, outer u8u^{8}.

dydx=8u7dudx=8(2x+1)7(2)=16(2x+1)7\frac{dy}{dx} =8u^{7}\,\frac{du}{dx} =8(2x+1)^{7}\,(2) =16(2x+1)^{7}

(You could leave it at 16(2x+1)716(2x+1)^{7} or expand further if required.)


4. y=esinxy=e^{\sin x}

Exponential‑of‑a‑function form.
Inner u=sinxu=\sin x, outer eue^{u}.

dydx=eududx=esinx(cosx)=esinxcosx\frac{dy}{dx} =e^{u}\,\frac{du}{dx} =e^{\sin x}\,(\cos x) =e^{\sin x}\cos x

Summary of the derivatives

  ddx[cos(nx)]=nsin(nx)ddx[x2+1]=xx2+1ddx[(2x+1)8]=16(2x+1)7ddx[esinx]=esinxcosx  \boxed{\; \begin{aligned} \frac{d}{dx}\bigl[\cos(nx)\bigr] &= -n\sin(nx)\\ \frac{d}{dx}\Bigl[\sqrt{x^{2}+1}\Bigr] &= \dfrac{x}{\sqrt{x^{2}+1}}\\ \frac{d}{dx}\bigl[(2x+1)^{8}\bigr] &= 16(2x+1)^{7}\\ \frac{d}{dx}\bigl[e^{\sin x}\bigr] &= e^{\sin x}\cos x \end{aligned} \;}

Each result follows directly from the chain rule, with power, trigonometric, and exponential derivative facts as needed.

Share this Q&A