Question

Let X and Y have joint pdf fX,Y(x,y) = 1/9(3-x)(2-y), for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2. Find P(Y ≥ 1 | X < 2).

Thought

Mapping out conditional probability

I'm starting with conditional probability, P(Y ≥ 1 | X < 2), by determining P(X < 2) first, then the numerator P(Y ≥ 1, X < 2) through integration of the joint pdf over the specified ranges.

Calculating the ratio

I determined the denominator with integration over X and Y. For the numerator, after integrating over the specified ranges, I calculated the probability ratio, confirming the final result.

Thought about conditional probability for 5 seconds

Answer

We are given that the joint pdf of XX and YY is

fX,Y(x,y)=19(3x)(2y),0x3,  0y2.f_{X,Y}(x,y)= \frac{1}{9}(3-x)(2-y),\quad 0\le x\le 3,\; 0\le y\le 2.

We wish to find

P(Y1X<2)=P(Y1 and X<2)P(X<2).P(Y\ge 1\mid X<2)=\frac{P(Y\ge 1\text{ and }X<2)}{P(X<2)}.

Step 1. Compute P(X<2)P(X<2)

The probability that X<2X<2 is obtained by integrating the joint density over the region 0x<20\le x<2 and 0y20\le y\le 2:

P(X<2)=x=02y=0219(3x)(2y)dydx.P(X<2)=\int_{x=0}^{2}\int_{y=0}^{2}\frac{1}{9}(3-x)(2-y)\,dy\,dx.

Integrate with respect to yy:

y=02(2y)dy.\int_{y=0}^{2}(2-y)\,dy.

Compute:

y=02(2y)dy=[2yy22]02=(2(2)222)0=(42)=2.\int_{y=0}^{2}(2-y)\,dy = \left[2y-\frac{y^2}{2}\right]_0^2 = \left(2(2)-\frac{2^2}{2}\right)-0 = (4-2)= 2.

Thus,

P(X<2)=1902(3x)2dx=2902(3x)dx.P(X<2)=\frac{1}{9}\int_{0}^{2}(3-x)\cdot 2\,dx = \frac{2}{9}\int_{0}^{2}(3-x)\,dx.

Now integrate with respect to xx:

02(3x)dx=[3xx22]02=(3(2)222)0=(62)=4.\int_{0}^{2}(3-x)\,dx = \left[3x-\frac{x^2}{2}\right]_0^{2} = \left(3(2)-\frac{2^2}{2}\right)-0 = (6-2)=4.

So,

P(X<2)=294=89.P(X<2) = \frac{2}{9}\cdot 4 = \frac{8}{9}.

Step 2. Compute P(Y1 and X<2)P(Y\ge 1 \text{ and }X<2)

This probability is given by:

P(Y1,X<2)=x=02y=1219(3x)(2y)dydx.P(Y\ge 1,\,X<2)=\int_{x=0}^{2}\int_{y=1}^{2}\frac{1}{9}(3-x)(2-y)\,dy\,dx.

Integrate with respect to yy:

y=12(2y)dy.\int_{y=1}^{2}(2-y)\,dy.

Compute:

y=12(2y)dy=[2yy22]12.\int_{y=1}^{2}(2-y)\,dy = \left[2y-\frac{y^2}{2}\right]_1^{2}.

Evaluate the antiderivative:

  • At y=2y=2: 2(2)222=42=22(2)-\frac{2^2}{2}=4-2=2.
  • At y=1y=1: 2(1)122=212=322(1)-\frac{1^2}{2}=2-\frac{1}{2}=\frac{3}{2}.

Thus, the result is:

232=12.2-\frac{3}{2}=\frac{1}{2}.

Therefore, we have:

P(Y1,X<2)=1902(3x)12dx=11802(3x)dx.P(Y\ge 1,\,X<2)=\frac{1}{9}\int_{0}^{2}(3-x)\cdot \frac{1}{2}\,dx=\frac{1}{18}\int_{0}^{2}(3-x)\,dx.

We already computed 02(3x)dx=4\int_{0}^{2}(3-x)\,dx=4. Hence,

P(Y1,X<2)=1184=418=29.P(Y\ge 1,\,X<2)=\frac{1}{18}\cdot 4 = \frac{4}{18} = \frac{2}{9}.

Step 3. Compute the Conditional Probability

Now, the conditional probability is:

P(Y1X<2)=P(Y1,X<2)P(X<2)=2989=28=14.P(Y\ge 1\mid X<2)=\frac{P(Y\ge 1,\,X<2)}{P(X<2)}=\frac{\frac{2}{9}}{\frac{8}{9}}=\frac{2}{8}=\frac{1}{4}.

Final Answer

14\boxed{\frac{1}{4}}

Share this Q&A