木棒扇形弧长计算

Created on: January 11, 2025

Answered using O1 by Chat01

Question

我有十根外径为35毫米,长度为275毫米的木棒,现我要把它们排成扇形形状,要求是底部在同一直线上,且宽度为275毫米,顶部最大宽度为525毫米,十根木棒均匀摆布,我要求顶部的弧形长度和作图方法。

Thought

Mapping the arrangement

I'm working through the setup by aligning the rods side by side at the bottom, bent outward to form a fan shape with a 525 mm top width.

Piecing together

I’m calculating the horizontal spacing of rods, assuming center-to-center spacing. Considering the bottom width aligns with the rods' diameter, adjusting my approach to fit the given constraints.

Figuring out the geometry

I’m piecing together that the rods form a circle sector, with the bottom 275 mm wide and the top 525 mm wide, extending 275 mm upwards.

Piecing together

I’m wondering if the rods connect the bottom and top chords of a circle segment or if each rod is a radius from a pivot to the chords.

Mapping the geometry

By positioning the rods as radii of a sector, with uniform angles between them, I can calculate the arc length at the top using the circle's radius and the sector's central angle.

Charting the space

I'm spacing the rods 30.555... mm apart on the x-axis, creating a coordinated grid to solve the problem geometrically and calculate the arc length at the top.

Figuring out angles

Revisiting rod spacing and angles to ensure they meet the 275 mm to 525 mm transition. Adjusting the approach to create a more precise geometric interpretation.

Taking a closer look

OK, let me see. The rods form a circle's radii around a pivot, with the bottom edge and top forming a chord and arc, respectively.

Tracking the rod movement

OK, let me see. The rods' radius increases slightly from the center to the top, though I'm working through whether the initial radius aligns with the bottom chord or the arc.

Mapping out

OK, let me see. Arranging the rods in a fan shape involves pivoting them from a single point, ensuring the bottom endpoints align along a 275 mm line, and the top forms a 525 mm arc.

Mapping the geometry

The circle's radius is the rods' length, 275 mm. This makes the bottom chord a distance from the center and the top chord 525 mm wide within the circle.

Mapping the arc

OK, let me see. The bottom chord is 275 mm, spanning less than the circle's 275 mm radius. Calculating the central angle it subtends reveals the precise arc length.

Figuring out optimal spacing

OK, I’m thinking about how to equally distribute the top and bottom chords to ensure the rods are spaced uniformly and the fan shape aligns correctly.

Evaluating the options

I’m mapping out the construction methods for the top arc, considering symmetry and uniform spacing, and piecing together the best approach for creating a robust geometric solution.

Mapping out endpoints

Piecing together the steps to form a circular arc with the top rod endpoints. This involves identifying the intersection of the perpendicular bisectors of a 525 mm chord to determine the circle's center.

Calculating the central angle

I’m envisioning the subtending angle for a 275 mm radius and a 525 mm chord, using geometric relationships to ensure a feasible solution.

Tallying the arc

Various radian and angle calculations point to an arc length of 700 mm at the top, utilizing the primary geometric formula for the radius and arc configuration.

Figuring out chord distances

I’m working through the radial distances from the circle's center to each chord, then finding the difference. The aim is to match this radial distance with the rod length.

Evaluating geometric constraints

Aligning the rod length with the arc length requires a geometric rethink due to the mismatch between the chords in the same circle. I'm exploring other circular arcs that meet the criteria.

Charting the angles

I'm curious about evenly distributing rods between the bottom and top arcs, ensuring each rod spans both arcs consistently and forming a fan shape. This is a geometric strategy worth exploring.

Charting the course

I’m setting up the bottom line from A to B, each rod length at 275 mm equally angled, leading to an arc formation by the top rod endpoints, spanning 525 mm.

Piecing together the angles

OK, so each rod spans 275 mm from bottom to top, forming a uniform horizontal pattern. This suggests the rods are evenly spread around a central upward outline.

Measuring the setup

First, I’m figuring out the X and Y coordinates for each rod anchor. Next, I’ll calculate the distance between bottom and top anchors to match the desired rod length.

Piecing together the arc

I’m pulling together the Y coordinates for each rod anchor, ensuring the arc length and uniform spacing fit perfectly. This means calculating the top endpoint's position as a function of i.

Confirming arc geometry

I'm curious if the top endpoints of the rods lie on a circle, calculating coordinates and using geometric principles to match angles and arc lengths.

Envisioning the circle

Considering a circle centered at (some x, 0) with a 275 mm radius, ensuring the top and bottom anchors align to form a uniform 525 mm arc along the top.

Mapping the angles

OK, let me see. I’m thinking about the angles between each rod, aiming for a 525 mm arc at the top and maintaining a 275 mm radius circle for this arrangement.

Addressing angle and chord

OK, let me see if I can align the angle subtending a 525 mm top chord with a 275 mm bottom chord, ensuring the geometric constraints are satisfied.

Rechecking the setup

Hmm, that's interesting. I’m realizing the rods, each 275 mm long, are aligned symmetrically, forming a fan shape with the top chord being 525 mm.

Charting the locations

I'm figuring out the placement of each rod's top endpoints along the arc, ensuring consistent spacing and aligning with the fan shape geometry. The goal is to ensure proper symmetry and symmetry.

Mapping angle subdivisions

I'm breaking down the angle between two rod vectors, ensuring uniform spacing by dividing the angle into nine equal sections, and accurately placing each rod's top endpoint along the arc.

Considering simpler methods

I think incorporating a simpler geometric method, like revolving rods around a pivot to locate top endpoints, could streamline the process for achieving the desired top arc length.

Crafting the arc

I’m pulling together a method to create a 525 mm arc by spacing rods equally on a 275 mm chord, then finding top endpoints and summing segment lengths for an approximation.

Spotting top endpoints

I’m identifying the top endpoints as intersections of the bottom endpoints with a 275 mm radius circle, leading to a 525 mm arc length.

Mapping the geometry

I’m figuring out the top endpoints by intersecting the bottom endpoints with a 275 mm radius circle, aiming for a 525 mm arc length. This approach ensures accurate placement.

Calculating distances

To approach this, I'm mapping out the arc length by summing distances between consecutive top endpoints, ensuring accurate geographic placement of the fan shape's rod arrangement.

Summing up segments

Interestingly enough, I’m calculating the total arc length by summing up the distances between consecutive top endpoints of the rods, making sure the fan shape's geometry is just right.

Piecing together distances

Interestingly enough, I’m working through calculating the lengths of segments between consecutive top endpoints of the rods. This method ensures precision in finding the total arc length.

Totaling segment lengths

I’m adding up the distances between consecutive top endpoints to estimate the arc length, which comes to an approximate 561.36 mm.

Calculating the curve

OK, I’m summing distances between top endpoints to find the approximate arc length, ensuring even spacing and smoothness in the fan shape’s geometry.

Charting the course

I’m considering drawing the fan shape by marking the bottom and top lines, dividing them evenly, and using a compass to trace arcs from the bottom to the top, ensuring smooth boundary connections.

Thought about木棒扇形排布,持续 1m 22s

Answer

下面给出一种“等杆扇形”布置的思路和近似计算方法,能帮助你确定这 10 根木棒排成底宽 275 mm、顶宽 525 mm、且每根木棒长度都是 275 mm 时,顶部所形成那条弧线的大致长度以及如何在实际中画出这一弧形。下面内容较详,请耐心阅读。


一、问题的几何理解

  1. 已知条件

    • 有 10 根木棒,每根长度 L=275mmL = 275\,\text{mm},外径 35 mm(直径部分可忽略在纯几何定位中,主要是要摆 10 根)。
    • 下沿(底部)要求在同一直线上,并且这 10 根木棒的最外侧到最外侧,总宽为 275 mm
    • 上沿(顶部)这 10 根木棒的最外侧到最外侧,总宽为 525 mm
    • 10 根木棒要“均匀摆布”,也就是从最左到最右依次分布,中间的间距平滑过渡。
    • 每根木棒的下端与上端之间的“中心线”长度必须是 275 mm(也就是木棒本身的长度)。
    • 希望求出:
      1. 这 10 根木棒顶端所连成的那条“弧形”的实际长度(近似值)。
      2. 在手工/制图时,如何画出这一弧形。
  2. 关键几何现象

    • 底部从左到右是 275 mm,顶部从左到右是 525 mm,说明从下往上,整个“扇形”被“展开”了 250 mm 的水平宽度差。
    • 每根棒都固定长度 275 mm,且要从下边那条直线(宽 275 mm)的一点,连到上方(宽 525 mm)对应的一点。这样一来,上端点不可能都落在同一条水平线上,而是会形成一个向下凹或向上凸的曲线(实际是向下凸)。
    • 如果让“最左那根”木棒下端在左下角、上端在左上角,那么它几乎是“竖直”摆放(因为这时上下的水平坐标几乎一样);而“最右那根”木棒下端在右下角、上端在右上角时,它就会明显向右斜,且顶端高度会比左边那根矮一些。

这样排下来,10 根木棒的上端自然落在一条“平滑曲线”上,我们可以把它近似称为“顶弧”。


二、顶弧长度的近似计算

下面给出的做法是先确定上下两条“分段”,再用坐标方法做离散求和,得到那条顶弧的近似长度。结果足以指导实际操作。

1. 确定上下端点的横坐标

  • 底边从左到右共 275 mm,均分成 9 段(因为要放 10 根木棒),则第 ii 根木棒(从左到右编号 i=0,1,,9i=0,1,\ldots,9)在底边的横坐标为

    xb,i  =  2759  i. x_{b,i} \;=\; \frac{275}{9}\;i.

    其中 xb,0=0,  xb,9=275x_{b,0} = 0, \; x_{b,9} = 275

  • 顶边从左到右共 525 mm,也均分成 9 段,则它的横坐标可以先假想为

    xt,i  =  5259  i. x_{t,i} \;=\; \frac{525}{9}\; i.

    其中 xt,0=0,  xt,9=525x_{t,0} = 0, \; x_{t,9} = 525

不过要注意:这只是它们在水平方向上“想要”分得更开(共 525 mm),并不代表木棒竖直上去后就能正好落在 (xt,i,某个 y)\bigl(x_{t,i},\text{某个 }y\bigr)。真正的 yy-坐标还要由“棒长 275 mm”这个条件来约束。

2. 根据棒长求顶端的 yy-坐标

  • ii 根木棒的下端在 (xb,i,0)\bigl(x_{b,i}, 0\bigr),上端假设在 (xt,i,yi)\bigl(x_{t,i},\, y_i\bigr)
  • 要求棒长固定为 275 mm,即 (xt,ixb,i)2  +  (yi0)2  =  275. \sqrt{\bigl(x_{t,i} - x_{b,i}\bigr)^2 \;+\; \bigl(y_i - 0\bigr)^2} \;=\; 275. 带入   xt,i=5259i,  xb,i=2759i  \;x_{t,i} = \tfrac{525}{9}\,i,\;\,x_{b,i}=\tfrac{275}{9}\,i\; (5259i2759i)2+yi2=2752. \Bigl(\frac{525}{9}i - \frac{275}{9}i\Bigr)^2 + y_i^2 = 275^2.
    • 5259i2759i=(525275)9i=2509i.\frac{525}{9}i - \frac{275}{9}i = \frac{(525 - 275)}{9}\,i = \frac{250}{9}\,i.
    • 所以 (2509i)2+yi2=2752=75625. \Bigl(\frac{250}{9}i\Bigr)^2 + y_i^2 = 275^2 = 75625. yi  =  75625    (2509i)2. y_i \;=\; \sqrt{75625 \;-\;\Bigl(\frac{250}{9}i\Bigr)^2}\,.
  • 这样就可以算出每一根木棒在顶端的坐标 (xt,i,yi)\bigl(x_{t,i},\,y_i\bigr)

举例

  • 对最左 i=0i=0 根棒:xb,0=0,  xt,0=0,  7562502=275  \,x_{b,0}=0,\;x_{t,0}=0,\;\sqrt{75625 - 0^2}=275\;\Rightarrow 上端就是 (0,275)(0,\,275)
  • 对最右 i=9i=9 根棒:xb,9=275,  xt,9=525,\,x_{b,9}=275,\;x_{t,9}=525, 75625    (2509×9)2  =  7562562500  =  13125    114.45. \sqrt{75625 \;-\;\Bigl(\tfrac{250}{9}\times 9\Bigr)^2} \;=\; \sqrt{75625 - 62500} \;=\; \sqrt{13125} \;\approx\;114.45. 所以它的上端约在 (525,114.45)\,(525,\,114.45)

这也说明:最左棒接近直立(顶端很高约 275)、最右棒则明显倾斜(顶端只有约 114.45 高)。

3. 依次连这些上端点,求弧长

  • 我们把 10 个顶端点记为 (xt,0,y0),(xt,1,y1),,(xt,9,y9)\,(x_{t,0},\,y_0),\,(x_{t,1},\,y_1),\dots,(x_{t,9},\,y_9)
  • 若要近似那条曲线长度,可以把相邻顶端连成直线段,再把 9 条短线段长度加起来。
  •     i=19(xt,ixt,i1)2  +  (yiyi1)2. \ell_{\text{弧}} \;\approx\; \sum_{i=1}^{9} \sqrt{\bigl(x_{t,i} - x_{t,i-1}\bigr)^2 \;+\;\bigl(y_{i} - y_{i-1}\bigr)^2}.
  • 经过一份典型的数值计算(将 xt,ix_{t,i} 视为等差增量 58.333...58.333...,再配合上面求出的 yiy_i 逐段相减做勾股),可以得到:     560570mm(较精细的离散求和得到约 561mm). \ell_{\text{弧}} \;\approx\; 560\sim570\,\text{mm} \quad (\text{较精细的离散求和得到约 }561\,\text{mm}). 这就是 10 根木棒在上述“底 275、顶 525”均匀展开情况下,顶端所形成那条弧线的总长度

简单记忆:它比“顶边的直线长度 525 mm”要再短一些(因为顶端坐标整体下移,曲线是往下弯的),但仍然在五百多毫米的量级。大约 560 mm 左右,可以满足排布设计和下料需求。


三、在实际中的作图方法

如果你要在木板上直接放样、或者在 CAD 中准确绘制,思路如下:

  1. 在底边画 275 mm 的水平线(记为 AB),把它等分成 9 份,标出 10 个点:

    A0=(0,0),  A1=(2759,0),  ,  A9=(275,0). A_0 = (0,0),\;A_1 = \Bigl(\tfrac{275}{9},0\Bigr),\;\dots,\;A_9 = (275,\,0).
  2. 在“想象的顶边”方向(比底边高一些)画一条更长的水平辅助线(记为 A'B'),长度 525 mm,也等分成 9 份,得到若干“目标横坐标”:

    B0=(0,?),  B1=(5259,?),  ,  B9=(525,?). B_0' = (0,\,?),\; B_1' = \Bigl(\tfrac{525}{9},\,?\Bigr), \;\dots,\; B_9' = (525,\,?).

    这里的“?” 只表示它暂时不一定是真正的垂直高度,只是先定出横向刻度 0, 58.33, 116.67, …, 525。

  3. 确定最左与最右木棒

    • 最左一根 (第 0 根) 下端 A0A_0(0,0)(0,0),上端几乎在 (0,275)(0,275),你可以用圆规量 275 mm(或用长 275 的样板),从 A0A_0 竖直向上量出那一点。
    • 最右一根 (第 9 根) 下端 A9A_9(275,0)(275,0),则上端应该放在与它水平相距 250 mm(到 525)的位置,且同样用圆规量 275 mm,找出那个交点(大约在 (525,114.45)(525,114.45))。
  4. 依次找中间各根的上端

    • 对第 ii 根:底端是 (2759i,0)\bigl(\tfrac{275}{9}\,i,\,0\bigr)
    • 先在上方画一条铅笔竖线(或用垂线)经过 x=5259ix=\tfrac{525}{9}\,i,也就是我们前面辅助线标的横坐标。
    • 以该木棒底端为圆心、半径 275 mm,用圆规(或长 275 mm 的细线)在这条竖线附近找交点。交点即是此棒的上端。记下 (xt,i,yi)\bigl(x_{t,i},\,y_i\bigr)
  5. 用样条尺(法曲线板)或细木条依次“光顺”通过这 10 个上端点,就得到那条“顶弧”。测量或在 CAD 里量这条曲线,就能得到大约 560 mm 左右的弧长。


四、答复小结

  1. 顶部弧形长度
    按上述“底 275、顶 525、棒长 275、共 10 根、均匀展开”的设定计算,可得弧长约在 560 mm 出头(更精细的离散计算约为 561 mm)。实际制作时,因人工放样、测量误差或棒径影响,可能有些许差别,但基本在 560 mm 附近。

  2. 具体作图/放样方法

    • 下边先定一条 275 mm 的水平线(分 9 份)。
    • 上边定一条 525 mm 的辅助水平(也分 9 份),然后依照“每根棒都要长 275 mm”的原则,用圆规(或 275 mm 样条)去量,得到各棒上端点。
    • 最后用光顺曲线(样条)连接这 10 个上端点,即可画出所需的“顶部弧形”。

这样,你既能在图纸或 CAD 中精确画出,也能在实物上比较方便地放线定位。希望对你的设计与施工有所帮助。

Share this Q&A