Conditional PDF Calculation

Created on: December 25, 2024

Answered using O1 by Chat01

Question

8. 单选题 (1分)

The joint p.d.f of (X,Y)(X, Y) is

24 y (1-x), & 0 \leq x \leq 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$ and then $ f(y|x) = ((\_\_\_\_\_\_\_\_\_))). $ A. $$ f(y|x) = \begin{cases} \frac{2y}{x^2}, & 0 \leq x < 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$ B. $$ f(y|x) = \begin{cases} \frac{2y}{x^2}, & 0 < x < 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$ C. $$ f(y|x) = \begin{cases} \frac{2y}{x^2}, & 0 < x \leq 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$ D. $$ f(y|x) = \begin{cases} \frac{2y}{x^2}, & 0 \leq x \leq 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$

Thought

确定边缘概率密度函数

首先,我要找到边缘概率密度函数 fX(x)f_X(x)。通过对联合 pdf 求积分:

fX(x)=0x24y(1x)dyf_X(x) = \int_{0}^{x} 24 y (1 - x) \, dy

积分结果是:

fX(x)=12x2(1x)f_X(x) = 12 x^2 (1 - x)

确认条件

我已经找到 f(yx)=2yx2f(y|x) = \frac{2y}{x^2} 这个表达式。然后,我检查了选项,发现在 0<x<10 < x < 1 这个条件下,所有选项都是相同的,因此正确的选项是 D。

思考,持续 几秒

Answer

To find the conditional probability density function f(yx)f(y|x), we start with the given joint probability density function (p.d.f):

f(x,y)={24y(1x),0x1, 0yx,0,otherwise.f(x, y) = \begin{cases} 24 y (1-x), & 0 \leq x \leq 1, \ 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases}

Step 1: Compute the Marginal p.d.f of XX, fX(x)f_X(x)

The marginal p.d.f of XX is obtained by integrating the joint p.d.f over yy:

fX(x)=0x24y(1x)dy=24(1x)0xydy=24(1x)[y22]0x=12x2(1x).f_X(x) = \int_{0}^{x} 24 y (1 - x) \, dy = 24 (1 - x) \int_{0}^{x} y \, dy = 24 (1 - x) \left[ \frac{y^2}{2} \right]_0^x = 12 x^2 (1 - x).

Step 2: Compute the Conditional p.d.f f(yx)f(y|x)

The conditional p.d.f f(yx)f(y|x) is given by:

f(yx)=f(x,y)fX(x)=24y(1x)12x2(1x)=2yx2,for 0<x<1 and 0yx.f(y|x) = \frac{f(x, y)}{f_X(x)} = \frac{24 y (1 - x)}{12 x^2 (1 - x)} = \frac{2y}{x^2}, \quad \text{for } 0 < x < 1 \text{ and } 0 \leq y \leq x.

Step 3: Determine the Correct Option

Reviewing the options provided:

  • Option B correctly specifies the conditions 0<x<10 < x < 1 and 0yx0 \leq y \leq x, matching our derived expression for f(yx)f(y|x).

Answer:
B.

f(yx)={2yx2,0<x<1, 0yx,0,otherwise.f(y|x) = \begin{cases} \frac{2y}{x^2}, & 0 < x < 1, \ 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases}

Share this Q&A