Conditional PDF Calculation
Created on: December 25, 2024
Created on: December 25, 2024
The joint p.d.f of is
24 y (1-x), & 0 \leq x \leq 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$ and then $ f(y|x) = ((\_\_\_\_\_\_\_\_\_))). $ A. $$ f(y|x) = \begin{cases} \frac{2y}{x^2}, & 0 \leq x < 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$ B. $$ f(y|x) = \begin{cases} \frac{2y}{x^2}, & 0 < x < 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$ C. $$ f(y|x) = \begin{cases} \frac{2y}{x^2}, & 0 < x \leq 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$ D. $$ f(y|x) = \begin{cases} \frac{2y}{x^2}, & 0 \leq x \leq 1, 0 \leq y \leq x, \\ 0, & \text{otherwise}. \end{cases} $$To find the conditional probability density function , we start with the given joint probability density function (p.d.f):
The marginal p.d.f of is obtained by integrating the joint p.d.f over :
The conditional p.d.f is given by:
Reviewing the options provided:
Answer:
B.