Реши пожалуйста
创建于:2025年12月24日
使用 GPT-5.2 Thinking 回答 Chat01
创建于:2025年12月24日
使用 GPT-5.2 Thinking 回答 Chat01
pythonfrom PIL import Image, ImageEnhance img = Image.open('/mnt/data/IMG_20251224_160125.jpg') img.size (2797, 1771)
pythonimport matplotlib.pyplot as plt, numpy as np, PIL # rotate 90 deg clockwise? image seems sideways. rot = img.rotate(90, expand=True) rot.size (1771, 2797)
python# crop central area with text for readability import numpy as np arr=np.array(rot) arr.shape (2797, 1771, 3)
python# Let's display quickly plt.figure(figsize=(10,14)) plt.imshow(rot) plt.axis('off') plt.show()
pythonrot2 = img.rotate(-90, expand=True) # rotate 90 counterclockwise plt.figure(figsize=(10,14)) plt.imshow(rot2) plt.axis('off') plt.show()
pythonimport numpy as np, matplotlib.pyplot as plt # crop region with problem text (roughly middle top) w,h=rot2.size # crop around text lines crop = rot2.crop((150, 300, w-150, 900)) # enhance contrast/sharpness enh=ImageEnhance.Contrast(crop).enhance(2.5) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(12,6)) plt.imshow(enh) plt.axis('off') plt.show()
pythoncrop = rot2.crop((80, 420, w-80, 1150)) enh=ImageEnhance.Contrast(crop).enhance(3.0) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(12,8)) plt.imshow(enh) plt.axis('off') plt.show()
Чтобы стержень висел горизонтально, нить должна быть закреплена в центре масс системы (стержень + два шарика).
Пусть точка подвеса находится на расстоянии x от шарика m₁ (от его конца стержня). Тогда до шарика m₂ расстояние 30 − x, а центр стержня (его масса M) находится на отметке 15 см, значит до него расстояние x − 15 (точка подвеса будет правее середины, потому что справа тяжелее).
Условие равновесия моментов относительно точки подвеса:
Подставим , , :
Ответ: 18 см.
pythonfrom PIL import Image, ImageOps img=Image.open('/mnt/data/IMG_20251224_160627.jpg') img.size (2523, 1788)
pythonimport matplotlib.pyplot as plt, numpy as np img_rot=img.rotate(90, expand=True) # rotate to upright? plt.figure(figsize=(10,7)) plt.imshow(img_rot) plt.axis('off') plt.show()
pythonimg_rot=img.rotate(270, expand=True) plt.figure(figsize=(10,7)) plt.imshow(img_rot) plt.axis('off') plt.show()
pythonimport numpy as np, matplotlib.pyplot as plt img_rot=img.rotate(270, expand=True) # crop around diagram crop=img_rot.crop((600,420,1900,950)) plt.figure(figsize=(12,4)) plt.imshow(crop) plt.axis('off') plt.show()
pythoncrop=img_rot.crop((700,540,1700,820)) plt.figure(figsize=(12,4)) plt.imshow(crop) plt.axis('off') plt.show()
pythonimport matplotlib.pyplot as plt small=img_rot.resize((800,600)) plt.figure(figsize=(8,6)) plt.imshow(small) plt.axis('off') plt.show()
pythonw,h=img_rot.size crop=img_rot.crop((500,900,1300,1450)) plt.figure(figsize=(12,6)) plt.imshow(crop) plt.axis('off') plt.show()
pythonimport numpy as np arr=np.array(crop) # convert to grayscale gray=arr.mean(axis=2) # focus on region of ruler y between maybe 160-260 in crop h,w=gray.shape y1,y2=160,260 region=gray[y1:y2,:] # compute column darkness: lower values means dark col_mean=region.mean(axis=0) # find local minima below threshold threshold=np.percentile(col_mean,5) mins=np.where(col_mean<threshold)[0] # group into clusters clusters=[] current=[] for x in mins: if not current or x==current[-1]+1: current.append(x) else: clusters.append(current) current=[x] if current: clusters.append(current) # get center of each cluster centers=[int(np (8, [334, 362, 374, 385, 388, 641, 678, 689])
pythony1,y2=210,250 region=gray[y1:y2,:] col_mean=region.mean(axis=0) threshold=np.percentile(col_mean,3) # darker mins=np.where(col_mean<threshold)[0] clusters=[] current=[] for x in mins: if not current or x==current[-1]+1: current.append(x) else: clusters.append(current); current=[x] if current: clusters.append(current) centers=[int(np.mean(c)) for c in clusters] centers, len(centers) ([282, 334, 641, 679, 695], 5)
pythonimport scipy.ndimage as ndi, numpy as np, math, statistics # compute x gradient absolute grad=np.abs(np.diff(region, axis=1)) # sum over y score=grad.sum(axis=0) # find peaks in score # smooth score_s=ndi.gaussian_filter1d(score, sigma=2) # find peaks with prominence from scipy.signal import find_peaks peaks,_=find_peaks(score_s, prominence=np.percentile(score_s,95), distance=30) peaks, len(peaks), score_s.max() (array([282, 330, 643]), 3, 1270.8451128188112)
pythonpeaks,_=find_peaks(score_s, prominence=np.percentile(score_s,85), distance=40) peaks, len(peaks) (array([282, 330, 413, 643]), 4)
python# enlarge crop for human inspection big=crop.resize((crop.size[0]*2, crop.size[1]*2)) plt.figure(figsize=(14,6)) plt.imshow(big) plt.axis('off') plt.show()
pythongray=np.array(crop.convert('L')) # choose row y around 235 y=235 row=gray[y,:] # threshold dark=np.where(row<80)[0] # cluster contiguous clusters=[] cur=[] for x in dark: if not cur or x==cur[-1]+1: cur.append(x) else: clusters.append(cur); cur=[x] if cur: clusters.append(cur) # compute cluster centers and widths centers=[int(np.mean(c)) for c in clusters] widths=[len(c) for c in clusters] list(zip(centers,widths))[:20], len(centers) ([(332, 1)], 1)
python# within ruler height approximate y from 180-270, compute dark count per x ys=range(195,260) mask=(gray[195:260,:]<120).astype(int) col=mask.sum(axis=0) # peaks where col> threshold peaks=np.where(col>30)[0] # cluster clusters=[]; cur=[] for x in peaks: if not cur or x==cur[-1]+1: cur.append(x) else: clusters.append(cur); cur=[x] if cur: clusters.append(cur) centers=[int(np.mean(c)) for c in clusters] widths=[len(c) for c in clusters] len(centers), list(zip(centers,widths))[:15] (1, [(333, 6)])
pythonimport matplotlib.pyplot as plt, numpy as np # plot row average across ruler height for more robust region=gray[185:270,:] col_mean=region.mean(axis=0) plt.figure(figsize=(12,3)) plt.plot(col_mean) plt.ylim(0,255) plt.show()
python# take narrow strip at top of ruler border near y=170-180 strip=gray[165:195,:] col_min=strip.min(axis=0) # minimum pixel value in strip per column plt.figure(figsize=(12,3)) plt.plot(col_min) plt.ylim(0,255) plt.show()
pythonfrom scipy.signal import find_peaks vals=255-col_min # invert so dips become peaks vals_s=ndi.gaussian_filter1d(vals, sigma=1) peaks,_=find_peaks(vals_s, height=40, distance=20) peaks, len(peaks) (array([335, 361, 388]), 3)
pythonstrip=gray[190:270,:] col_min=strip.min(axis=0) vals=255-col_min vals_s=ndi.gaussian_filter1d(vals, sigma=1) peaks,_=find_peaks(vals_s, height=60, distance=40) peaks, len(peaks) (array([333, 384, 633, 678]), 4)
pythonpeaks,_=find_peaks(vals_s, height=15, distance=40) peaks, len(peaks), peaks[:20] (array([251, 291, 333, 384, 426, 488, 542, 633, 678]), 9, array([251, 291, 333, 384, 426, 488, 542, 633, 678]))
pythonbig=crop.resize((crop.size[0]*4, crop.size[1]*4)) plt.figure(figsize=(16,8)) plt.imshow(big) plt.axis('off') plt.show()
pythongray=np.array(crop.convert('L')) # define region containing ruler (y bounds) by trial y_top,y_bot=160,270 region=gray[y_top:y_bot,:] col_min=region.min(axis=0) # min in column inv=255-col_min inv_s=ndi.gaussian_filter1d(inv, sigma=1.5) # find peaks peaks,props=find_peaks(inv_s, height=30, distance=40) peaks, props['peak_heights'][:10], len(peaks) (array([290, 362, 405, 678]), array([ 49., 250., 51., 253.]), 4)
pythonplt.figure(figsize=(12,3)) plt.plot(inv_s) plt.scatter(peaks, inv_s[peaks], color='red') plt.ylim(0,260) plt.show()
pythonpeaks,_=find_peaks(inv_s, height=35, distance=15) len(peaks), peaks[:20] (11, array([271, 290, 318, 334, 362, 388, 405, 427, 641, 678, 705]))
pythonimport matplotlib.pyplot as plt plt.figure(figsize=(12,4)) plt.imshow(crop) for x in peaks: plt.axvline(x=x, color='red', linewidth=1) plt.axis('off') plt.show()
pythongray=np.array(crop.convert('L')) row_mean=gray.mean(axis=1) # find y range where mean significantly less than background import numpy as np th=np.percentile(row_mean,10) ys=np.where(row_mean<th)[0] ys.min(), ys.max(), th (294, 357, 230.035375)
pythony_top,y_bot=300,360 region=gray[y_top:y_bot,:] col_min=region.min(axis=0) inv=255-col_min inv_s=ndi.gaussian_filter1d(inv, sigma=1) peaks,_=find_peaks(inv_s, height=40, distance=30) peaks, len(peaks) (array([262, 341, 376, 418, 497, 551, 645]), 7)
pythonplt.figure(figsize=(12,4)) plt.imshow(crop) for x in peaks: plt.axvline(x=x, color='red', linewidth=1) plt.axis('off') plt.show()
pythonpeaks,_=find_peaks(inv_s, height=20, distance=30) peaks, len(peaks) (array([192, 262, 341, 376, 418, 497, 551, 645, 704]), 9)
pythonruler=crop.crop((240,260,760,410)) # focus plt.figure(figsize=(12,3)) plt.imshow(ruler) plt.axis('off') plt.show()
pythonrgray=np.array(ruler.convert('L')) # focus on interior excluding top/bottom border maybe y 50-110 region=rgray[30:120,:] darkness=255-region col_score=darkness.sum(axis=0) col_s=ndi.gaussian_filter1d(col_score, sigma=1) # find peaks with distance around segment width ~? use 50 maybe peaks,_=find_peaks(col_s, prominence=np.percentile(col_s,85), distance=40) peaks, len(peaks) (array([ 30, 92, 153, 214, 275, 337, 398, 457]), 8)
python# get indices of highest scores top=np.argsort(col_s)[-20:] sorted(top) [29, 30, 31, 91, 92, 93, 153, 154, 214, 215, 275, 276, 336, 337, 338, 397, 398, 399, 400, 457]
pythonregion=rgray[:, :] darkness=255-region col_score=darkness.sum(axis=0) col_s=ndi.gaussian_filter1d(col_score, sigma=1) peaks,_=find_peaks(col_s, prominence=np.percentile(col_s,85), distance=40) peaks, len(peaks), ruler.size (array([ 30, 92, 153, 214, 275, 337, 399, 457]), 8, (520, 150))
pythoncol_s[-10:], col_s.max(), np.argmax(col_s) (array([15, 26, 18, 6, 2, 5, 11, 16, 14, 14], dtype=uint64), 21377, 92)
pythoncol_min=rgray.min(axis=0) min_x=np.argmin(col_min) col_min[min_x], min_x (0, 0)
pythonxs=np.where(col_min<50)[0] xs[:20], xs[-20:], len(xs) (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), array([448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467]), 468)
pythonth=80 dark_frac=(rgray<th).mean(axis=0) # find columns where dark_frac > 0.4 xs=np.where(dark_frac>0.3)[0] # cluster clusters=[];cur=[] for x in xs: if not cur or x==cur[-1]+1: cur.append(x) else: clusters.append(cur);cur=[x] if cur: clusters.append(cur) centers=[int(np.mean(c)) for c in clusters] widths=[len(c) for c in clusters] len(centers), list(zip(centers,widths))[:15], centers[-5:] (8, [(30, 4), (92, 5), (153, 4), (214, 4), (275, 4), (336, 4), (398, 4), (457, 3)], [214, 275, 336, 398, 457])
pythonplt.figure(figsize=(12,3)) plt.imshow(ruler) for x in centers: plt.axvline(x=x, color='red', linewidth=1) plt.axis('off') plt.show()
pythonright=ruler.crop((480,0,520,150)) plt.figure(figsize=(3,3)) plt.imshow(right.resize((160,600))) plt.axis('off') plt.show()
pythoncol_mean=rgray.mean(axis=0) # find columns with mean < 245 (background white ~255) cols=np.where(col_mean<245)[0] cols.min(), cols.max(), ruler.size (0, 468, (520, 150))
pythongray_full=np.array(crop.convert('L')) col_mean=gray_full.mean(axis=0) cols=np.where(col_mean<250)[0] # capture ruler and arrows perhaps cols.min(), cols.max(), crop.size (209, 707, (800, 550))
pythonrow_mean=gray_full.mean(axis=1) rows=np.where(row_mean<250)[0] rows.min(), rows.max() (147, 549)
pythonth=np.percentile(row_mean,5) rows=np.where(row_mean<th)[0] th, rows.min(), rows.max(), len(rows) (228.6159375, 294, 357, 28)
pythonr_region=gray_full[294:357,209:707] # compute dark fraction per column dark_frac=(r_region<100).mean(axis=0) # columns with dark_frac>0.2 indicate vertical lines xs=np.where(dark_frac>0.2)[0] clusters=[];cur=[] for x in xs: if not cur or x==cur[-1]+1: cur.append(x) else: clusters.append(cur);cur=[x] if cur: clusters.append(cur) centers=[int(np.mean(c)) for c in clusters] widths=[len(c) for c in clusters] len(centers), list(zip(centers,widths))[:20] (9, [(3, 5), (61, 6), (123, 5), (184, 5), (245, 5), (306, 6), (368, 7), (429, 6), (487, 6)])
Чтобы линейка оставалась в покое, нужно выполнить два условия:
(направлена против и ).
Берём моменты относительно левого конца:
Ответ:
pythonfrom PIL import Image, ImageEnhance img=Image.open('/mnt/data/IMG_20251224_162226.jpg') img.size (2214, 1799)
pythonimport matplotlib.pyplot as plt, numpy as np img_rot=img.rotate(90, expand=True) img_rot.size (1799, 2214)
pythonplt.figure(figsize=(10,12)) plt.imshow(img_rot) plt.axis('off') plt.show()
pythonimg_rot2=img_rot.rotate(180, expand=True) plt.figure(figsize=(10,12)) plt.imshow(img_rot2) plt.axis('off') plt.show()
pythonimport numpy as np, matplotlib.pyplot as plt import PIL.ImageOps as ops crop=img_rot2.crop((450,650,1350,1250)) # rough region plt.figure(figsize=(10,6)) plt.imshow(crop) plt.axis('off') plt.show()
python# enlarge and show grid with markers zoom=crop.resize((crop.size[0]*2,crop.size[1]*2)) plt.figure(figsize=(12,7)) plt.imshow(zoom) plt.axis('off') plt.show()
pythonimport numpy as np, PIL.Image as Image ruler = zoom.crop((0,250,1600,750)) # region around ruler arr=np.array(ruler.convert('L')) # find y range with ruler: pixels darker (border). # Sum dark pixels per row. dark = arr<80 row_sum = dark.sum(axis=1) # rows with high dark count ys = np.where(row_sum>100)[0] ys[:10], ys[-10:], len(ys) (array([], dtype=int64), array([], dtype=int64), 0)
pythonarr.min(), arr.max(), np.quantile(arr, [0.01,0.05,0.1,0.2]) (0, 255, array([166., 255., 255., 255.]))
pythondark=arr<200 row_sum=dark.sum(axis=1) ys=np.where(row_sum>200)[0] ys[:20], ys[-20:], len(ys), row_sum.max() (array([], dtype=int64), array([], dtype=int64), 0, 57)
pythonys=np.where(row_sum>30)[0] ys[:10], ys[-10:], len(ys), row_sum.max() (array([24, 25, 26, 27, 28, 29, 30, 31, 32, 33]), array([315, 316, 317, 318, 319, 320, 334, 335, 336, 337]), 59, 57)
pythonplt.figure(figsize=(12,4)) plt.imshow(ruler) plt.axis('on') plt.show()
pythonruler2 = zoom.crop((0,550,1600,1150)) plt.figure(figsize=(12,4)) plt.imshow(ruler2) plt.axis('on') plt.show()
pythonregion = ruler2.crop((550,200,1550,370)) arr=np.array(region.convert('L')) # detect dark pixels for borders, threshold 120 maybe dark=arr<120 col_sum=dark.sum(axis=0) # find peaks import scipy.signal as signal, numpy as np peaks,_=signal.find_peaks(col_sum, height=30, distance=20) peaks[:20], len(peaks), col_sum.max() (array([100, 202, 314, 419, 527, 637, 745, 853, 955]), 9, 141)
python# Use region2 bigger containing arrow and ruler big = ruler2.crop((550,0,1550,500)) # includes arrow F1 and F2 arr=np.array(big) # find red pixels: high R low G,B R,G,B=arr[:,:,0],arr[:,:,1],arr[:,:,2] red_mask=(R>150) & (G<120) & (B<120) coords=np.column_stack(np.where(red_mask)) coords.shape (2924, 2)
python# Separate arrow1 (up) and arrow2 (down) by x clustering xs=coords[:,1] # k-means 2 clusters from sklearn.cluster import KMeans km=KMeans(n_clusters=2, random_state=0).fit(xs.reshape(-1,1)) centers=sorted(km.cluster_centers_.flatten()) centers [311.1820263308533, 852.3041631265935]
pythoncenters_raw=km.cluster_centers_.flatten() # map label->center for lab in [0,1]: sel=coords[labels==lab] print(lab, centers_raw[lab], sel[:,0].min(), sel[:,0].max(), sel.shape[0])
Здесь силы противоположны: вверх, вниз.
Дополнительная сила должна быть вниз.
По рисунку деление = 6 см, всего 8 частей.
Моменты (вверх — “плюс”, вниз — “минус”):
✅ Ответ:
pythonfrom PIL import Image, ImageOps img=Image.open('/mnt/data/IMG_20251224_163347.jpg') img.size (2446, 1805)
pythonimport matplotlib.pyplot as plt, numpy as np, PIL plt.figure(figsize=(10,7)) plt.imshow(img) plt.axis('off') plt.show()
pythonrot=img.rotate(90, expand=True) plt.figure(figsize=(12,8)) plt.imshow(rot) plt.axis('off') plt.show()
pythonrot2=rot.rotate(180, expand=True) plt.figure(figsize=(12,8)) plt.imshow(rot2) plt.axis('off') plt.show()
pythonimport numpy as np arr=np.array(rot2) h,w=arr.shape[:2] h,w (2446, 1805)
python# crop central region crop=rot2.crop((100, 200, 1700, 1800)) plt.figure(figsize=(12,8)) plt.imshow(crop) plt.axis('off') plt.show()
python# zoom text area around mass statement text_crop=rot2.crop((120, 250, 1650, 550)) plt.figure(figsize=(12,4)) plt.imshow(text_crop) plt.axis('off') plt.show()
pythontext_crop2=rot2.crop((120, 350, 1700, 720)) plt.figure(figsize=(12,4)) plt.imshow(text_crop2) plt.axis('off') plt.show()
pythonL=100; l=25; M=1; r=2 x_s=L-l # solve for a import sympy as sp a=sp.symbols('a', real=True) sol=sp.solve(sp.Eq(r*(L-a/2-x_s), x_s-L/2), a) sol [25.0000000000000]
pythona=25 x_cm=(M*L/2 + r*M*(a/2) + r*M*(L-a/2))/(M+2*r*M) x_cm 50.0
Возьмём ось вдоль бруса от левого конца.
После того как на левый конец поставили такой же кубик, система стала симметричной: кубики одинаковые и стоят на концах, сам брус однородный ⇒ центр масс всей системы окажется ровно посередине бруса, то есть на
А подставка изначально была на расстоянии см от правого конца, то есть на координате
Значит, чтобы снова было равновесие, подставку нужно передвинуть на
Ответ: 25 см.