1. 写出以Hartree积作为变分波函数时体系总能量表达式,并由变分法推导出Hartree方程。 ...

创建于:2025年10月11日

使用 GPT-5 Thinking 回答 Chat01

问题

  1. 写出以Hartree积作为变分波函数时体系总能量表达式,并由变分法推导出Hartree方程。

  2. 证明Fock算符是厄米算符,或证明在一组已知基函数下的矩阵方程(Roothaan方程)中Fock矩阵是厄米矩阵。

问题

  1. 写出以Hartree积作为变分波函数时体系总能量表达式,并由变分法推导出Hartree方程。

  2. 证明Fock算符是厄米算符,或证明在一组已知基函数下的矩阵方程(Roothaan方程)中Fock矩阵是厄米矩阵。

思考

Clarifying Hermitian properties

To prove the F matrix is Hermitian in a real AO basis, I need to show that two-electron integrals follow symmetry, like (μν|λσ) = (νμ|λσ) = (μν|σλ) = (λσ|μν), etc. For complex basis, F must be Hermitian, and real integrals make it symmetric. The overlap matrix S is Hermitian. I'll also explain this in Chinese with LaTeX for clarity.

Explaining energy expectation and variational principle

The energy expectation is E[{ϕi}]=iϕihϕi+1/2ijϕi(r)2v(r,r)ϕj(r)2drdrE[ \{\phi_i\} ] = \sum_i \langle \phi_i | h | \phi_i \rangle + 1/2 \sum_{i \neq j} \iint |\phi_i(r)|^2 v(r,r') |\phi_j(r')|^2 dr dr'. With spin included, we use xx-coordinates, but spin integrals reduce. To minimize EE, we apply the variational principle with Lagrange multipliers and construct the Hartree potential.

Establishing Hartree and Fock equations

The Hartree equation is [h+VH(i)]ϕi=ϵiϕi[ h + V_H^{(i)} ] \phi_i = \epsilon_i \phi_i, which includes total density ρ(r)=jϕj(r)2\rho(r) = \sum_j |\phi_j(r)|^2. If orthogonality isn't imposed, we get additional Lagrange multipliers. For Hartree, there's no exchange term, but the Fock operator appears in Hartree-Fock. Now, I need to show Fock is Hermitian in the context of spin-orbitals.

Defining and proving Hermitian operators

The Coulomb operator is self-adjoint because it's a real multiplicative potential: ϕJjχ=Jjϕχ\langle \phi | J_j \chi \rangle = \langle J_j \phi | \chi \rangle. For the exchange operator, I need to prove it's Hermitian: ϕKjχ=Kjϕχ\langle \phi | K_j \chi \rangle = \langle K_j \phi | \chi \rangle. I'll handle the proof by showing symmetry and exchanging dummy variables.

Thought for 42s

回答

下面用原子单位(ℏ=m_e=e=1)给出简明而完整的推导与证明。

1) 以 Hartree 积作为变分波函数的能量泛函与 Hartree 方程

体系哈密顿量(只含电子,原子核外势 vextv_{\text{ext}} 给定)

H^=i=1Nh^(i)  +  12ijv^(i,j),h^(i)=12i2+vext(ri),v^(i,j)=1rirj.\hat H=\sum_{i=1}^{N}\hat h(i)\;+\;\frac12\sum_{i\ne j} \hat v(i,j),\qquad \hat h(i)=-\frac12\nabla_i^2+v_{\text{ext}}(\mathbf r_i),\quad \hat v(i,j)=\frac{1}{|\mathbf r_i-\mathbf r_j|}.

Hartree 积(未反对称)

ΨH(x1,,xN)=i=1Nϕi(xi),ϕiϕi=1\Psi_H(x_1,\dots,x_N)=\prod_{i=1}^{N}\,\phi_i(x_i),\qquad \langle \phi_i|\phi_i\rangle=1

(这里 x(r,σ)x\equiv(\mathbf r,\sigma) 含空间与自旋;库伦相互作用与自旋无关,后续自旋可积去。)

总能量泛函
ΨHH^ΨH\langle \Psi_H|\hat H|\Psi_H\rangle 得到

E[{ϕ}]  =  i=1Nϕih^ϕi  +  12ijdrdr  ϕi(r)2ϕj(r)2rr.E[\{\phi\}] \;=\; \sum_{i=1}^{N}\,\langle \phi_i|\hat h|\phi_i\rangle \;+\;\frac12\sum_{i\ne j}\iint d\mathbf r\,d\mathbf r'\; \frac{|\phi_i(\mathbf r)|^2\,|\phi_j(\mathbf r')|^2}{|\mathbf r-\mathbf r'|}.

为极小化 EE,对每个 ϕi\phi_i 施加归一化(可同时要求彼此正交,见下注),构造拉格朗日量

L  =  E[{ϕ}]    i,jΛij(ϕiϕjδij),\mathcal L \;=\; E[\{\phi\}] \;-\; \sum_{i,j}\Lambda_{ij}\big(\langle\phi_i|\phi_j\rangle-\delta_{ij}\big),

ϕi\phi_i^* 作泛函变分并令 δL=0\delta\mathcal L=0,得

h^ϕi(r)  +  [jiϕj(r)2rrdr]ϕi(r)  =  jΛijϕj(r).\hat h\,\phi_i(\mathbf r)\;+\;\Bigg[\sum_{j\ne i}\int \frac{|\phi_j(\mathbf r')|^2}{|\mathbf r-\mathbf r'|}\,d\mathbf r'\Bigg]\,\phi_i(\mathbf r) \;=\;\sum_j \Lambda_{ij}\,\phi_j(\mathbf r).

对右侧的拉格朗日乘子矩阵 Λ\boldsymbol\Lambda 进行酉对角化(“规范轨道”表示),可使 jΛijϕj=εiϕi\sum_j \Lambda_{ij}\phi_j=\varepsilon_i\phi_i。于是得到 Hartree 方程

  [h^+VH(i)(r)]ϕi(r)=εiϕi(r),VH(i)(r)=jiϕj(r)2rrdr  \boxed{\;\Big[\hat h + V_H^{(i)}(\mathbf r)\Big]\phi_i(\mathbf r)=\varepsilon_i\,\phi_i(\mathbf r),\qquad V_H^{(i)}(\mathbf r)=\sum_{j\ne i}\int \frac{|\phi_j(\mathbf r')|^2}{|\mathbf r-\mathbf r'|}\,d\mathbf r'\;}

其中 VH(i)V_H^{(i)} 是由“除去自作用”的电子密度产生的 Hartree 势。若用总密度 ρ(r)=jϕj(r)2\rho(\mathbf r)=\sum_j|\phi_j(\mathbf r)|^2,也常写成

[h^+ρ(r)rrdrϕi(r)2rrdr]ϕi=εiϕi,\Big[\hat h + \int \frac{\rho(\mathbf r')}{|\mathbf r-\mathbf r'|}\,d\mathbf r' -\int \frac{|\phi_i(\mathbf r')|^2}{|\mathbf r-\mathbf r'|}\,d\mathbf r'\Big]\phi_i=\varepsilon_i\phi_i,

两式等价(后一项抵消自作用)。

注:纯 Hartree 理论并不强制轨道正交;引入 Λij\Lambda_{ij} 是最一般的处理。最终通过对角化 Λ\Lambda 可得到标准的本征值形式。


2) 证明 Fock 算符/矩阵的厄米性

2.1 Fock 算符是厄米的

在(自旋)Hartree–Fock 中,

F^=h^+jocc(J^jK^j),\hat F=\hat h+\sum_{j\in\text{occ}}\big(\hat J_j-\hat K_j\big),

其中对任意单电子函数 φ\varphi,

(J^jφ)(1)=[ψj(2)2r12d2]φ(1),(K^jφ)(1)=ψj(2)φ(2)r12ψj(1)d2,(\hat J_j\varphi)(1)=\Bigg[\int \frac{|\psi_j(2)|^2}{r_{12}}\,d2\Bigg]\varphi(1),\qquad (\hat K_j\varphi)(1)=\int \frac{\psi_j^*(2)\,\varphi(2)}{r_{12}}\,\psi_j(1)\,d2,

ψj\psi_j 为占据的(自旋)轨道,r12=r1r2r_{12}=|\mathbf r_1-\mathbf r_2|

  • h^\hat h 为标准一电子厄米算符:ϕh^χ=h^ϕχ\langle\phi|\hat h\chi\rangle=\langle\hat h\phi|\chi\rangle
  • J^j\hat J_j 是由实标势乘法构成的算符,显然自伴:ϕJ^jχ=J^jϕχ\langle\phi|\hat J_j\chi\rangle=\langle\hat J_j\phi|\chi\rangle
  • 交换算符 K^j\hat K_j 亦自伴 ϕK^jχ=ϕ(1)ψj(1)ψj(2)χ(2)r12d1d2,K^jϕχ=ψj(1)ϕ(2)ψj(2)χ(1)r12d1d2=12ϕ(1)ψj(1)ψj(2)χ(2)r12d1d2.\begin{aligned} \langle\phi|\hat K_j\chi\rangle &=\iint \frac{\phi^*(1)\psi_j(1)\,\psi_j^*(2)\chi(2)}{r_{12}}\,d1\,d2,\\ \langle\hat K_j\phi|\chi\rangle &=\iint \frac{\psi_j(1)\phi^*(2)\,\psi_j^*(2)\chi(1)}{r_{12}}\,d1\,d2 \overset{1\leftrightarrow 2}{=}\iint \frac{\phi^*(1)\psi_j(1)\,\psi_j^*(2)\chi(2)}{r_{12}}\,d1\,d2. \end{aligned} 两者相等,利用了 r12=r21r_{12}=r_{21} 与虚变量交换对积分的不变性。

因此 F^\hat F 为一组厄米算符之和,必为厄米算符

  ϕF^χ=F^ϕχ  \boxed{\;\langle\phi|\hat F\chi\rangle=\langle\hat F\phi|\chi\rangle\;}

2.2 Roothaan(Roothaan–Hall)方程中 Fock 矩阵是厄米的

在一组已知(通常为实)原子轨道基 {χμ}\{\chi_\mu\} 上展开 ψp=μCμpχμ\psi_p=\sum_\mu C_{\mu p}\chi_\mu, 闭壳层 RHF 的 Roothaan 方程为

FC=SCε,\mathbf F\,\mathbf C=\mathbf S\,\mathbf C\,\boldsymbol\varepsilon,

其中 S\mathbf S 为重叠矩阵,ε\boldsymbol\varepsilon 为对角轨道能量矩阵。Fock 矩阵元

Fμν=hμν+λσPλσ[(μνλσ)12(μλνσ)],F_{\mu\nu}=h_{\mu\nu}+\sum_{\lambda\sigma}P_{\lambda\sigma}\Big[(\mu\nu|\lambda\sigma)-\tfrac12(\mu\lambda|\nu\sigma)\Big],

hμν=χμh^χνh_{\mu\nu}=\langle\chi_\mu|\hat h|\chi_\nu\ranglePP 为密度矩阵(RHF 下为厄米矩阵),双电子积分

(μνλσ)=χμ(1)χν(1)χλ(2)χσ(2)r12d1d2(\mu\nu|\lambda\sigma)=\iint \frac{\chi_\mu(1)\chi_\nu(1)\,\chi_\lambda(2)\chi_\sigma(2)}{r_{12}}\,d1\,d2

满足置换对称: (μνλσ)=(νμσλ)=(λσμν)=(\mu\nu|\lambda\sigma)=(\nu\mu|\sigma\lambda)=(\lambda\sigma|\mu\nu)=\cdots

于是

Fμν=hμν+λσPλσ[(μνλσ)12(μλνσ)]=hνμ+λσPσλ[(νμσλ)12(νσμλ)](用 h\*=hT,  ()\*=() 且重命名指标)=Fνμ,\begin{aligned} F_{\mu\nu}^* &=h_{\mu\nu}^*+\sum_{\lambda\sigma}P_{\lambda\sigma}^* \Big[(\mu\nu|\lambda\sigma)^*-\tfrac12(\mu\lambda|\nu\sigma)^*\Big]\\ &=h_{\nu\mu}+\sum_{\lambda\sigma}P_{\sigma\lambda} \Big[(\nu\mu|\sigma\lambda)-\tfrac12(\nu\sigma|\mu\lambda)\Big]\qquad(\text{用 }h^\*=h^T,\;(\cdot)^\*=(\cdot) \text{ 且重命名指标})\\ &=F_{\nu\mu}, \end{aligned}

其中用到了 Pλσ=PσλP_{\lambda\sigma}^*=P_{\sigma\lambda}(密度矩阵厄米)和双电子积分的对称性。故

  F=F  \boxed{\;\mathbf F^\dagger=\mathbf F\;}

即 Fock 矩阵在该基下是厄米的(若基函数取实,则 F\mathbf F 还是对称的)。配合 S=S\mathbf S^\dagger=\mathbf SS\mathbf S 正定,Roothaan 方程是标准的广义厄米本征值问题


小结

  • 以 Hartree 积变分得到的能量泛函含一电子项与电子-电子库伦平均场项;极值条件给出 [h^+VH(i)]ϕi=εiϕi\big[\hat h+V_H^{(i)}\big]\phi_i=\varepsilon_i\phi_i 的 Hartree 方程。
  • 在 HF 中,h^\hat h、库伦算符 J^\hat J 与交换算符 K^\hat K 均为厄米,故 F^\hat F 厄米;在任意基下由对称性的两电子积分与厄米的密度矩阵可直接推出 Fock 矩阵厄米。

分享这个问答