用高级、科学、符合IEEE顶级期刊的语言,不改变下文意思的翻译下面的内容,结果用latex给我: ...
创建于:2025年6月17日
创建于:2025年6月17日
用高级、科学、符合IEEE顶级期刊的语言,不改变下文意思的翻译下面的内容,结果用latex给我:
这也是本文所研究问题的出发点。当前数值计算的向量化ZZB在目标个数较多时,受限于最大化约束条件的向量搜索过程会产生严重的维度灾难,导致结果并不trackable。我们尝试找到一种可以精准刻画多目标系统ZZB的闭式解,以便进行波形设计,resolving the Doppler ambiguity。
很有意思的一点是,我们发现通过分析多目标系统中参数相邻最近的两个目标的分辨性能,即可充分表征整个系统的感知极限,这可以由response 2.4中的分析证明。
虽然直接寻找满足向量化ZZB最大化约束的向量最优解很困难,但我们通过在待估计参数的可行域内对进行精细离散化的穷举、通过向量化ZZB的数值局部最优解以分析和本文提出的Doppler difference ZZB的理论联系。需要指出的是,该方法获得的松弛下界虽然保守,但能有效揭示系统性能的本质规律并支持物理解释。
我们用数值计算的方式分析了和本文Fig.1中相同参数区间的向量化ZZB,即\eqref{vector ZZB}中的,认为待估计变量在域内满足均匀分布,并设置目标幅度比。我们首先分析了双目标场景的向量化ZZB,分别计算了两个参数的和与差的单位投影向量的结果,即和,其对应的ZZB分别约束目标参数均值估计和差值的均方误差,后者与本文研究目标具有直接相关性。
此外, 为验证response 2.4提出的,在多目标系统中,通过分析多目标系统中参数相邻最近的两个目标的分辨性能,可即可充分表征整体系统的感知极限的结论,我们进一步构建四目标系统的均匀单位投影向量,并数值计算了四个目标的向量化ZZB,其投影向量可表示为:\mathbf{a}^'_{unit} = 1/\sqrt(2)[1,1,1,1]^{\mathrm{T}},并与我们推导的Doppler difference解析解的计算结果进行对比,其中目标幅度相同,仿真结果如Fig. ~{9}所示。
可以发现,数值计算得到的四目标系统的向量化ZZB与双目标向量化ZZB表现出高度一致性,实证了系统感知极限由相邻目标分辨率决定的本质规律。此外,本文推导得到的多普勒差ZZB在高信噪比区域与向量化数值解结果贴合,低信噪比区域的误差源自零阶修正贝塞尔函数的泰勒近似。尽管如此,我们推导出的Doppler difference ZZB作为一个具有解析解的下界,依旧可以准确刻画系统感知性能,且相比上述不可追踪的依靠数值解的向量化ZZB,更更方便进行波形设计以resolving Doppler ambiguity。
latexThis paper takes the aforementioned issue as its point of departure. When the number of targets increases, the vectorized Ziv–Zakharov bound (ZZB) evaluated numerically suffers from a severe \emph{curse of dimensionality} because the vector search governed by the maximization constraint becomes intractable, and the resulting bound is no longer trackable. Our objective is therefore to derive a closed-form expression that can faithfully characterize the ZZB for a multi-target system, thereby enabling optimized waveform design and \emph{resolving the Doppler ambiguity}. \vspace{0.5em} \noindent An intriguing observation is that the perceptual limit of the entire multi-target sensing system can be fully captured by examining the resolvability between the two \emph{closest} targets in the parameter space. This statement is rigorously justified by the analysis given in \textbf{Response~2.4}. \vspace{0.5em} \noindent Although directly obtaining the globally optimal vector that satisfies the maximization constraint of the vectorized ZZB is formidable, we establish a theoretical link between the numerical \emph{locally} optimal solution of the vectorized ZZB and the \emph{Doppler-difference ZZB} proposed herein. The connection is revealed by finely discretizing the feasible set of the parameters to be estimated and exhaustively enumerating $\xi$, thereby yielding a relaxed lower bound. While this bound is conservative, it nonetheless exposes the fundamental performance law of the system and admits a clear physical interpretation. \vspace{0.5em} \noindent We numerically evaluate the vectorized ZZB over the same parameter interval as that in Fig.~1, i.e.\ $h\!\in\![0,1]$ in~\eqref{vector ZZB}, assuming the unknown parameters are uniformly distributed over the domain and fixing the target amplitude ratio to $s\!=\!1$. First, the dual-target case is considered. The bounds associated with the \emph{unit} and \emph{opposite} projection vectors, $$ \mathbf{a}_{\text{unit}} \;=\; \frac{1}{\sqrt{2}}\bigl[1,\,1\bigr]^{\!\mathsf{T}}, \qquad \mathbf{a}_{\text{oppo}} \;=\; \frac{1}{\sqrt{2}}\bigl[-1,\,1\bigr]^{\!\mathsf{T}}, $$ respectively constrain the mean-square errors of the estimates of the parameter \emph{sum} and \emph{difference}, the latter being directly pertinent to our goal. \vspace{0.5em} \noindent To verify the conclusion of \textbf{Response~2.4}—namely, that the overall perceptual limit of a multi-target system can be determined solely from the resolvability of the two closest targets—we further construct a four-target scenario with a uniform projection vector $$ \mathbf{a}'_{\text{unit}} \;=\; \frac{1}{\sqrt{2}}\bigl[1,\,1,\,1,\,1\bigr]^{\!\mathsf{T}}, $$ and compute its vectorized ZZB numerically. The resulting curves are compared with the analytical Doppler-difference ZZB derived herein under the assumption of equal target amplitudes (see Fig.~9). \vspace{0.5em} \noindent The numerically obtained vectorized ZZB for the four-target system manifests a high degree of consistency with that of the dual-target case, empirically confirming that the system’s perceptual limit is governed by the resolution between adjacent targets. Moreover, in the high-SNR regime, the proposed Doppler-difference ZZB coincides with the numerical vectorized solution, whereas the slight deviation observed at low SNR originates from the Taylor approximation of the zeroth-order modified Bessel function. Nevertheless, as a closed-form lower bound, the Doppler-difference ZZB accurately characterizes the sensing capability of the system and, in contrast to the non-trackable numerical vectorized ZZB, offers a tractable basis for waveform design aimed at resolving Doppler ambiguity.