详细英飞凌第四代IGBT和第七代IGBT的差异,比如产品参数规格上的不同,或者第七代IGBT相比第四...
创建于:2025年6月6日
使用 Deep Research 回答 Chat01
创建于:2025年6月6日
使用 Deep Research 回答 Chat01
详细英飞凌第四代IGBT和第七代IGBT的差异,比如产品参数规格上的不同,或者第七代IGBT相比第四代IGBT新增的属性等等,聚焦ig在变频器中的应用。我需要所有的参数对比,并且要足够详细。
为了帮你进行详细比较,能否请你补充以下信息:
这些信息将帮助我找到最准确、最有用的技术资料和对比分析。
1.没有特定的IGBT产品型号。2.应用场景没有限定。3.我需要的是所有的参数。
好的,我将对英飞凌第四代IGBT和第七代IGBT在变频器应用中的所有产品参数进行全面对比,包括新增特性和性能改进,涵盖导通压降、开关损耗、热阻、工作电压、电流等级、栅极电荷、开关速度等。
请稍等,我整理好详细内容后会告诉你。
下面列出了英飞凌第四代IGBT(IGBT4)与第七代IGBT(IGBT7)的主要性能参数对比(以典型1200V电压等级、35A模块FP35R12W2T4和FP35R12W2T7为例),并突出IGBT7相对于IGBT4的新特性和改进:
参数 | 第四代 IGBT (IGBT4) | 第七代 IGBT (IGBT7) | 性能差异/改进 |
---|---|---|---|
导通压降 V<sub>CE(sat)</sub> (典型) | 约1.65–1.85 V(随结温升高而略增) (FP35R12W2T4 Infineon Technologies - Mouser Electronics) ([PDF] Short form catalog 2018) | 降低约20%,约1.3–1.6 V(显著降低导通损耗) (Infineon completes TRENCHSTOP IGBT7 Easy portfolio with additional current ratings - Power Electronics News) ([TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey](https://www.digikey.com/en/product-highlight/i/infineon/trenchstop-igbt7#:~:text=%2A%20Lower%20on)) |
开关损耗 E<sub>on</sub>/E<sub>off</sub> (典型) | E<sub>off</sub>、E<sub>on</sub>与IGBT7相当(IGBT4已优化了开关损耗) (IGBT T4 vs T7 series - Infineon Developer Community) ;典型关断能量几十 mJ 级 | 与IGBT4相近:关断损耗几乎相同,开通损耗略有增加但幅度很小 (IGBT T4 vs T7 series - Infineon Developer Community) ([PDF] TrenchStop-IGBT - Next Generation IGBT for Motor Drive Application) ;IGBT7采用柔和开关设计,dv/dt 更可控 (Infineon completes TRENCHSTOP IGBT7 Easy portfolio with additional current ratings - Power Electronics News) | IGBT7在降低导通损耗的同时保持了与IGBT4接近的开关损耗,总损耗降低约15% ([TRENCHSTOP IGBT7 - Infineon Technologies |
反并二极管 (VF,恢复) | 第四代 EC4 快速二极管,正向压降和恢复损耗一般 | 第七代 EC7 二极管正向压降降低约0.1 V ([TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey](https://www.digikey.com/en/product-highlight/i/infineon/trenchstop-igbt7#:~:text=)) ;反向恢复更软,恢复损耗更低,开关振荡小 |
短路耐受能力 (SCWT) | 可承受约6–10 µs 短路(典型值,取决于芯片和条件) | 短路耐受时间缩短,约5–8 µs(典型5 µs) (Infineon Technologies TRENCHSTOP™ IGBT7 Discretes & Modules) 。需更快保护,但仍满足驱动器快速保护要求 | IGBT7短路容限略有下降,这是导通压降降低的权衡。仍具备足够短路能力,但设计需确保保护在5 µs内动作。 |
最高结温 T<sub>vj</sub> | 150 °C 连续工作温度 (过载条件下建议不超150 °C) | 175 °C 过载结温能力 (IGBT7与IGBT4在伺服驱动器中的对比测试-电子工程专辑) 。在过载条件下允许结温提高25 °C(持续时间一般≤60秒) (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) | IGBT7允许更高结温,在1分钟以内过载时可达175 °C,从而提高过载时输出电流,增加功率密度 (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) 。平时连续运行仍以150 °C为典型上限。 |
电压等级 V<sub>CES</sub> | 650V、1200V、1700V 等系列(例如 1200V/1700V模块) | 同等电压等级(650V、1200V、1700V 等都有产品) (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) | 电压等级覆盖相似应用范围。IGBT7在各电压等级均提供更优性能,但耐压类别本身与IGBT4相当。 |
电流等级 (模块额定电流) | 例如1200V EasyPIM模块最大约50A,1700V EconoDUAL3模块最大600A (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) | 更高电流密度:同尺寸模块电流提升~30%-50%。例如1700V EconoDUAL3可达900A(比IGBT4的600A提高50%) ([Charged EVs | Infineon's new 900 A IGBT chip offers 30% less static loss - Charged EVs](https://chargedevs.com/newswire/infineons-new-900-a-igbt-chip-offers-30-less-static-loss/#:~:text=The%201%2C200%20V%20module%20provides,solar%20inverters%2C%20and%20UPS%20inverters)) |
栅极驱动要求 | 一般需±15V Gate驱动(典型+15V/-5~ -8V),以防止寄生导通;栅极总电荷/电容相对较小 | 驱动更简单:支持+15V/0V单电源驱动 (IGBT7与IGBT4在伺服驱动器中的对比测试-电子工程专辑) 。IGBT7优化了栅极-集电极电容比(C<sub>GE</sub>/C<sub>GC</sub>),不易寄生导通,可不需要负压关断 ([TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey](https://www.digikey.com/en/product-highlight/i/infineon/trenchstop-igbt7#:~:text=)) ;栅极电荷略有增加 |
热阻及封装 | 典型采用Al_2O_3陶瓷基板封装,R<sub>th(j-c)</sub>在规定范围;需要额外涂敷导热膏 | 封装改进:模块内部增加铜互连面积和bonding线(+40%根数)以降低热阻 (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) ;可选预涂导热界面材料(TIM)降低热阻和提高可靠性 ([Charged EVs | Infineon's new 900 A IGBT chip offers 30% less static loss - Charged EVs](https://chargedevs.com/newswire/infineons-new-900-a-igbt-chip-offers-30-less-static-loss/#:~:text=The%20IGBT7%20is%20part%20of,thermal%20resistance%20and%20longest%20lifetime)) |
可靠性/寿命 (功率循环) | 符合工业应用寿命要求,在150 °C结温下具有一定功率循环次数;传统焊料封装 | 可靠性增强:改进封装适应175 °C(更高温结构设计) ([Charged EVs | Infineon's new 900 A IGBT chip offers 30% less static loss - Charged EVs](https://chargedevs.com/newswire/infineons-new-900-a-igbt-chip-offers-30-less-static-loss/#:~:text=The%20IGBT7%20is%20part%20of,thermal%20resistance%20and%20longest%20lifetime)) ;更低温升使功率循环寿命提升。部分模块提供无铅焊接/烧结互连选项 |
注:上述数值为典型值或相对变化幅度,具体参数以英飞凌官方数据手册为准。IGBT7在保持与IGBT4相同电压等级和封装兼容性的前提下,实现了多方面性能提升。
1. 超低导通压降,降低导通损耗: IGBT7采用了全新的微沟槽栅极结构,大幅降低了晶体管导通时的饱和压降,比IGBT4降低约20% (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。例如同样1200V/35A模块,在125℃下IGBT4的V<sub>CE(sat)</sub>约1.85V,而IGBT7可降至约1.5V左右。这种静态损耗的大幅下降对于工业变频器尤为关键——因为电机驱动通常开关频率不高,导通损耗是主要损耗分量 (Infineon | 1200V IGBT7 And Emcon7 Have Better Controllability And Help Improve The Performance Of Inverter Systems - Recent News in the field of Electronic Components - News) 。IGBT7降低导通压降后,在相同负载电流下发热更少,效率更高。在实际测试中,同功率输出下IGBT7模块的结温比IGBT4低十几摄氏度 (IGBT7与IGBT4在伺服驱动器中的对比测试-英飞凌开发者技术社区) 。因此,第七代IGBT显著减少了逆变器满载时的损耗发热,提高系统效率并允许更高的输出功率 (Infineon completes TRENCHSTOP IGBT7 Easy portfolio with additional current ratings - Power Electronics News) 。
2. 开关损耗及dv/dt特性: 尽管IGBT7专注于降低导通损耗,但其开关过程损耗(E<sub>on</sub>/E<sub>off</sub>)与IGBT4相当,没有明显增加 (IGBT T4 vs T7 series - Infineon Developer Community) 。测试表明IGBT7的关断损耗几乎与IGBT4持平,而开通损耗仅有很小幅度变化 (IGBT T4 vs T7 series - Infineon Developer Community) 。与此同时,IGBT7芯片采用了**“柔和”开关设计**,具备更好的dv/dt可控性 (IGBT7与IGBT4在伺服驱动器中的对比测试-电子工程专辑) 。通过调整门极电阻,工程师可以方便地权衡IGBT7的开关速度与电压尖峰,满足电机绝缘耐压和EMI限制等要求 (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。IGBT7的开关电压变化率更可控意味着开关瞬态振荡更小,寄生电磁干扰降低,有利于改善变频器的EMI性能和电机绝缘可靠性 (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。同时,第七代反并联二极管也经过优化:其正向压降比前代降低约100 mV,反向恢复电流更小、更平缓 (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。这减少了二极管反向恢复损耗和应力,使IGBT7模块在开关过程中表现出更低的振荡和损耗。总体而言,IGBT7在显著降低导通损耗的同时,将开关损耗保持在与IGBT4相近的水平,并通过优化开关波形提升了系统的电磁兼容和可靠性。
3. 短路耐受能力: 功率IGBT需具备在桥式电路发生短路时幸存数微秒的能力。IGBT4典型短路耐受时间约为8–10 µs(视器件类型和母线电压而定),而IGBT7由于芯片导通电流密度更高,短路耐受时间有所缩短,约在5–8 µs范围 (Infineon Technologies TRENCHSTOP™ IGBT7 Discretes & Modules) 。例如英飞凌650V离散IGBT7的数据规定SCWT典型为5 µs (Infineon Technologies TRENCHSTOP™ IGBT7 Discretes & Modules) 。尽管IGBT7在短路容限上稍有降低,但仍满足工业变频器对快速短路保护的要求——大多数驱动器的检测和关断电路可在几微秒内动作,使器件安全关断。同时需要注意,在应用IGBT7时应确保保护电路可靠快速,以充分利用其短路能力。总的来说,IGBT7在短路容忍度上的些许妥协是其降低导通压降的结果,但其短路能力依然符合变频器安全运行标准。
4. 结温和热管理: 第四代IGBT通常规定结温不超过150 °C,而IGBT7引入了175 °C过载结温规范 (IGBT7与IGBT4在伺服驱动器中的对比测试-电子工程专辑) 。也就是说,在短时过载条件下(例如过载持续几十秒以内),IGBT7芯片允许结温从150 °C提升至最高175 °C (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) 。这一改进使IGBT7非常适合应对电机驱动的过载工况:当电机短时过载时,器件可以承受更高的温度不致损坏,从而输出更大电流。例如据报道,在一分钟内过载的应用中,IGBT7比IGBT4多出的25 °C结温裕度可使同样规格器件输出能力提高,相当于提升了功率密度 (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) 。需要强调的是,175 °C仅用于过载短时间运行,IGBT7在长期连续运行中仍建议控制在150 °C左右以保证寿命。但是这一特性为系统设计提供了更大余量:要么在峰值条件下不降额输出更多功率,要么在相同输出下运行更“凉快”从而提高可靠性。
5. 电流与功率密度: 得益于上述诸多改进,IGBT7模块能够在相同封装尺寸下提供更高的电流等级。英飞凌将IGBT7芯片应用到现有封装中,形成了引脚兼容的升级方案 (Infineon completes TRENCHSTOP IGBT7 Easy portfolio with additional current ratings - Power Electronics News) 。例如,封装兼容的Easy系列中,原来使用IGBT4的2B封装模块可用IGBT7实现约30%的输出电流提升 (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。在更大功率等级上,1700V EconoDUAL™3模块第四代最大为600A,而第七代推出了750A和900A两个更高等级 (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) ,同尺寸电流提升达50% (Charged EVs | Infineon's new 900 A IGBT chip offers 30% less static loss - Charged EVs) 。这意味着客户可以直接用IGBT7模块替换IGBT4模块而获得更大功率输出;或者在需要相同功率时,选择更小尺寸的IGBT7模块来实现缩小系统体积(所谓“功率跳档”) (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。此外,IGBT7模块还允许减少并联器件数量:由于单模块电流提高,过去可能需要并联两只IGBT4模块的场合,现在一只IGBT7模块即可胜任 (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。由此带来的好处是系统结构更简单、损耗分布更均匀,成本和体积都有所下降。
6. 栅极驱动与寄生效应: IGBT7在栅极结构上的优化不仅提高了性能,也简化了驱动设计。如上表所示,传统IGBT4通常需要约+15V/-7V的双极性栅极驱动电压,特别是施加负偏压关断以防止高dV/dt下的米勒效应寄生导通。而IGBT7由于栅极-电容比(C<sub>GE</sub>/C<sub>GC</sub>)经过重新优化,关断时栅极对米勒电流的抗扰性更强 (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。实测表明,IGBT7在许多场合不需要负栅压即可安全关断 (IGBT7与IGBT4在伺服驱动器中的对比测试-电子工程专辑) 。也就是说,可以采用单电源+15V/0V驱动IGBT7,大大简化了驱动电源设计和隔离要求。这对变频器设计者而言降低了复杂性和成本,同时提高了系统可靠性(少一个负压电源环节)。此外,IGBT7的输入电容有所增加,但这主要体现在低压下的米勒平台,更大的栅极电荷反而赋予其更平顺的开关波形控制。总体来看,第七代IGBT在保持与前代兼容的同时,让驱动变得更友好:不但降低了寄生振荡和误导通风险,也免除了负压供电的麻烦 (IGBT7与IGBT4在伺服驱动器中的对比测试-电子工程专辑) 。
7. 封装工艺与热阻改良: 除了芯片本身,IGBT7在模块封装层面也有不少提升。英飞凌针对大电流模块改进了内部连接设计,例如增大功率端子处的铜排面积,以容纳更多并联的铝线键合——IGBT7模块的引线根数比IGBT4增加约40% (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) 。更多的并联键合线可降低内部导流分担压力,减小每根引线的电流热载荷,从而降低模块等效电阻和热点温升。测试显示,在相同电流和开关条件下,使用IGBT7芯片的1200V模块其直流母线端子温度比IGBT4降低了约20 °C (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) ,可见封装改进有效缓解了大电流运行时的局部发热。这不仅提高了效率,还减少了封装材料的热应力,延长模块寿命。另一方面,IGBT7系列模块还提供了诸如预涂敷导热界面材料(TIM)等选项 (Charged EVs | Infineon's new 900 A IGBT chip offers 30% less static loss - Charged EVs) 。相较传统手工涂覆硅脂,预敷TIM厚度均匀且长期稳定,能够降低热阻约10–20%并避免因硅脂干涸导致的劣化,从而提升模块热循环可靠性 (Charged EVs | Infineon's new 900 A IGBT chip offers 30% less static loss - Charged EVs) 。总的来说,IGBT7通过芯片与封装的协调设计,在散热方面更胜一筹:器件本身发热更少,封装导热能力更强,使得整个功率模块在同等甚至更严苛条件下运行温度更低、更可靠。
综上改进使得英飞凌第七代IGBT在各种变频器应用中展现出明显的系统层面优势:
效率提升与能耗降低: 由于IGBT7导通损耗和二极管损耗的大幅下降,同样运行条件下变频器的总损耗降低,可减小散热需求、提高效率 (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。例如在工业电机恒速运行时,使用IGBT7的逆变器效率比IGBT4方案提高,长期运行节省可观电能。这对光伏逆变器、UPS等需要高效率的场合同样意义重大。
功率密度提高,尺寸和成本降低: IGBT7允许在更小尺寸或相同尺寸下输出更大功率。对于升级已有IGBT4设计,用户可以直接替换为IGBT7模块以提升约30%的输出能力 (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) ;或者在保持功率不变的前提下,选用更小封装的IGBT7来实现缩小系统体积(实现从更大框架降级到更小框架) (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。这意味着整机可以做得更小更轻,或在相同尺寸下容纳更多功率单元。同时,由于单模块功率增大,某些需要并联IGBT的场合可减少并联数量,节省模块和驱动数量,降低BOM成本和装调复杂度。
冷却系统简化: 得益于损耗减少和封装散热增强,IGBT7方案下逆变器发热显著降低,同样负载下器件结温更低 (IGBT7与IGBT4在伺服驱动器中的对比测试-英飞凌开发者技术社区) 。因此可选用更小的散热器或风扇来满足散热需求,甚至在部分轻载工况下无需强迫风冷即可自然冷却。这不仅削减了冷却系统的体积和成本,也提升了系统的可靠性(因为风扇等活动部件的减少)。
更高过载能力和可靠性: IGBT7的175 °C过载结温赋予了变频器更强的短时过载能力。在工业电机应用中,经常需要一定时间的过载能力(如150%额定电流持续1分钟等);IGBT7能够在过载期间安全运行而不过早触发热保护,从而满足重过载场合的应用要求 (新一代1700V IGBT7技術及其在電力電子系統中的應用優勢 - 大大通(繁體站)) 。同时,在平常运行中IGBT7结温更低,这延长了器件寿命,降低故障率。封装改进(预涂TIM、更好的键合可靠性等)也使热循环寿命提高,适应频繁启停和负载波动的场景 (Charged EVs | Infineon's new 900 A IGBT chip offers 30% less static loss - Charged EVs) 。
电磁兼容性与驱动简化: 第七代IGBT开关更柔和,dv/dt和di/dt的可调范围宽阔,利于抑制尖峰电压和电磁干扰 (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。这对于长电缆供电的电机、空调压缩机等尤其重要,可减少对电机绝缘和其它敏感器件的应力。而驱动电路方面,IGBT7无需负偏压关断,驱动电源和驱动IC设计更加简单 (IGBT7与IGBT4在伺服驱动器中的对比测试-电子工程专辑) 。这不仅降低了控制电路成本,还减小了由驱动电源故障引起IGBT误导通的风险,系统调试维护也更加方便。
总之,英飞凌第七代 TRENCHSTOP™ IGBT 在保持与第四代IGBT相同应用范围和封装接口的情况下,实现了更低的损耗、更高的电流和温度裕度,以及更好的控制特性和封装可靠性。这些改进为变频器(无论是通用变频器、电机伺服驱动还是光伏并网逆变器等)带来了更高的效率和功率密度、更小的体积重量以及更高的可靠性 (IGBT7与IGBT4在伺服驱动器中的对比测试-英飞凌开发者技术社区) (TRENCHSTOP IGBT7 - Infineon Technologies | DigiKey) 。对于设计工程师而言,第七代IGBT模块几乎是一种“即插即用”的升级方案 (Infineon completes TRENCHSTOP IGBT7 Easy portfolio with additional current ratings - Power Electronics News) ——无需改变主电路拓扑和散热结构,就能明显提升系统性能指标,在当今追求高效节能和紧凑设计的产业趋势下展现出巨大的价值。利用IGBT7的这些优势,变频器系统可以实现更高的性价比和竞争力,为工业控制和新能源应用带来切实的收益。
参考文献: