两杆之间保持接触蛋壳以相对滑动,他们的角速度一定相等吗

创建于:2025年4月13日

使用 O1 回答 Chat01

问题

两杆之间保持接触蛋壳以相对滑动,他们的角速度一定相等吗

思考

Examining relative motion

I’m looking at whether two rods that stay in contact and slide relative to each other must have equal angular velocities. Interestingly enough, without slipping, their angular velocities must match.

Assessing sliding rods

Now I'm considering two slender rods connected at their ends, forming a four-bar-like mechanism with a slider joint. Their angular velocities might differ since they slide relative to each other.

Analyzing velocity components

I’m examining the relative sliding of two contact rods. Tangential velocity needs to be zero to match angular velocities, as there's no control over the normal velocity component.

Analyzing angular velocities

I'm mapping out under what conditions angular velocities of contact rods might equalize, particularly when rods are symmetrical with shared rotational and sliding dynamics.

Finished reasoning

回答

不一定相等。
“保持接触”只要求两杆在接触点 不会分离或相互压入,也就是说——沿两杆公法线(法向)的速度分量必须相同;而“可相对滑动”意味着沿切向的速度可以不同,所以接触点可以滑动。


1. 接触点速度条件

设两根刚杆分别为 Ⅰ、Ⅱ,接触点记为 P。
在平面内运动时

vP()=ω×rP/O,vP()=ω×rP/O\mathbf v_{P}^{(Ⅰ)}=\boldsymbol\omega_{Ⅰ}\times \mathbf r_{P/O_Ⅰ},\qquad \mathbf v_{P}^{(Ⅱ)}=\boldsymbol\omega_{Ⅱ}\times \mathbf r_{P/O_{Ⅱ}}
  • 法向分量必须相等:
    (vP()vP())n=0(\mathbf v_{P}^{(Ⅰ)}-\mathbf v_{P}^{(Ⅱ)})\cdot\mathbf n=0

  • 切向分量若允许滑动,则
    (vP()vP())t0(\mathbf v_{P}^{(Ⅰ)}-\mathbf v_{P}^{(Ⅱ)})\cdot\mathbf t\neq 0
    在无滑动(纯滚动或铰接)时才要求这一项也为 0。

只有一条标量约束方程(法向方向),显然不足以强迫 ω=ω\omega_{Ⅰ}=\omega_{Ⅱ}


2. 一个直观例子

两根等长细杆 OA、OB 的下端分别铰接在地面 O_1、O_2,上端在某一点 P 互相顶住但不销接。
几何关系给出

ωO1Psinθ  =  ωO2Psinθ,\omega_{Ⅰ}\,O_1P\sin\theta_{Ⅰ} \;=\; \omega_{Ⅱ}\,O_2P\sin\theta_{Ⅱ},

其中 θ,θ\theta_{Ⅰ},\theta_{Ⅱ} 为各杆与水平线的夹角。
只要 θθ\theta_{Ⅰ}\neq\theta_{Ⅱ},两边乘号的系数不同,ω\omega_{Ⅰ}ω\omega_{Ⅱ} 自然可以不同。


3. 什么时候才会“相等”?

  • 销接铰链:如果两杆在 P 处用销子连接成真正的四连杆,则 P 处既无法向也无切向相对速度,结果是两杆的角速度满足另一组方程;对对称情形往往得到 ω=ω\omega_{Ⅰ}=\omega_{Ⅱ}
  • 纯滚动:若在 P 处规定无滑动(例如轮与杆的纯滚),同样有切向速度约束,可能导致特殊几何下两角速度相等。

结论
只要允许在接触点沿切向滑动,两杆的角速度就不必相等;它们之间只存在由“法向不分离”给出的单一速度约束关系。

问题

01(1x2)32dx\int_0^1 (1-x^2)^{\frac {3}{2}} d x

思考

Substituting trigonometric variables

I’ll start by substituting x=sin(θ)x = \sin(\theta) and θ\theta limits. This simplifies to 0π/2cos4(θ)dθ\int_{0}^{\pi/2} \cos^4(\theta) \, d\theta.

Breaking down integrals

I’m tackling each term in the integral: a constant, cosine, and cosine squared. Integrating these individually from 0 to π/2\pi/2, I sum the results to find the final value.

Reasoned about integral evaluation for 7 seconds

回答

下面给出详细的求解过程。


1. 三角替换法

计算

I  =  01(1x2)32dxI \;=\; \int_{0}^{1} \bigl(1 - x^2\bigr)^{\tfrac{3}{2}} \, d x

我们可以先做三角替换:

x  =  sinθdx  =  cosθdθ,1x2  =  1sin2θ  =  cos2θ.x \;=\;\sin \theta\quad\Longrightarrow\quad dx \;=\;\cos \theta \, d\theta,\qquad 1 - x^2 \;=\;1 - \sin^2 \theta \;=\;\cos^2 \theta.

xx 从 0 积分到 1 转换到 θ\theta00 积分到 π2\tfrac{\pi}{2}

I  =  0π/2(cos2θ)32  cosθdθ  =  0π/2cos3θcosθdθ  =  0π/2cos4θ  dθ.I \;=\;\int_{0}^{\pi/2} \bigl(\cos^2 \theta\bigr)^{\tfrac{3}{2}}\;\cos \theta\,d\theta \;=\;\int_{0}^{\pi/2} \cos^3 \theta \,\cos \theta \,d\theta \;=\;\int_{0}^{\pi/2}\cos^4 \theta\;d\theta.

故问题化为求

0π/2cos4θdθ.\int_{0}^{\pi/2} \cos^4 \theta \, d\theta.

2. 计算 0π/2cos4θdθ\displaystyle \int_{0}^{\pi/2} \cos^4 \theta \, d\theta

利用幂次余弦的恒等式:

cos4θ  =  (cos2θ)2  =  (1+cos(2θ)2)2  =  14[1+2cos(2θ)+cos2(2θ)].\cos^4\theta \;=\;\bigl(\cos^2\theta\bigr)^2 \;=\;\left(\frac{1 + \cos(2\theta)}{2}\right)^2 \;=\;\frac{1}{4}\Bigl[1 + 2\cos(2\theta) + \cos^2(2\theta)\Bigr].

将其拆分:

0π/21dθ  =  π2.\displaystyle \int_{0}^{\pi/2} 1 \, d\theta \;=\;\frac{\pi}{2}.

(\displaystyle \int_{0}^{\pi/2} \cos(2\theta),d\theta ;=;\frac{1}{2}\sin(2\theta)\Big|_0^{\pi/2} ;=;\frac{1}{2}\bigl[\sin(\pi) - \sin(0)\bigr] ;=;0.)

0π/2cos2(2θ)dθ  =  0π/21+cos(4θ)2dθ  =  120π/21dθ  +  120π/2cos(4θ)dθ.\int_{0}^{\pi/2} \cos^2(2\theta)\, d\theta \;=\;\int_{0}^{\pi/2} \frac{1 + \cos(4\theta)}{2} \, d\theta \;=\;\frac12\int_{0}^{\pi/2}1\,d\theta \;+\;\frac12\int_{0}^{\pi/2}\cos(4\theta)\,d\theta.
  • 第一部分:12π2=π4.\tfrac12 \cdot \tfrac{\pi}{2} = \tfrac{\pi}{4}.
  • 第二部分:1214sin(4θ)0π/2=0.\displaystyle \frac12 \cdot \frac{1}{4}\sin(4\theta)\big|_0^{\pi/2} = 0.

0π/2cos2(2θ)dθ  =  π4.\int_{0}^{\pi/2} \cos^2(2\theta)\, d\theta \;=\;\frac{\pi}{4}.

因此

0π/2cos4θdθ  =  0π/214[1+2cos(2θ)+cos2(2θ)]dθ  =  14[π2+0+π4]  =  143π4  =  3π16.\int_{0}^{\pi/2} \cos^4 \theta \,d\theta \;=\;\int_{0}^{\pi/2} \tfrac{1}{4} \bigl[1 + 2\cos(2\theta) + \cos^2(2\theta)\bigr] \, d\theta \;=\;\frac{1}{4}\Bigl[\frac{\pi}{2} + 0 + \frac{\pi}{4}\Bigr] \;=\;\frac{1}{4}\cdot\frac{3\pi}{4} \;=\;\frac{3\pi}{16}.

3. 结论

将结果代入原积分,可得

01(1x2)32dx  =  3π16.\boxed{ \int_0^1 \bigl(1 - x^2\bigr)^{\tfrac{3}{2}} \, dx \;=\;\frac{3\pi}{16}. }

问题

03x(y+(1+y2))dy\int_{0}^{3x}(y + \sqrt(1 + y^2)) \operatorname{d} y

思考

Piecing together the integral

I’m figuring out the indefinite integral of y + sqrt(1+y^2) dy with respect to y, then evaluating from 0 to 3x. This involves standard integral and possibly substitutions.

Working through the integral

I’m working out the definite integral from 0 to 3x using the indefinite integral of y + sqrt(1+y^2), and I’ve set up the expression for F(3x) and F(0).

Reasoned about integral calculation for 23 seconds

回答

下面给出详细的计算步骤,目标是求以下随 xx 变化的定积分:

I(x)  =  03x ⁣(y  +  1+y2)dy.I(x)\;=\;\int_{0}^{3x}\!\Bigl(y \;+\;\sqrt{\,1 + y^2\,}\Bigr)\,\mathrm{d}y.

1. 先求被积函数的不定积分

F(y)  =  (y  +  1+y2)dy.F(y)\;=\;\int \Bigl(y \;+\;\sqrt{\,1+y^2\,}\Bigr)\,\mathrm{d}y.

将其拆分为两部分:

  1. ydy  =  y22.\displaystyle \int y\,\mathrm{d}y \;=\;\frac{y^2}{2}.

  2. 1+y2dy.\displaystyle \int \sqrt{1+y^2}\,\mathrm{d}y.
    这是一个常见的标准结果,可以通过三角或双曲替换推导得出:

    1+y2dy  =  y21+y2  +  12lny  +  1+y2  +  C.\int \sqrt{1+y^2}\,\mathrm{d}y \;=\;\frac{y}{2}\,\sqrt{1+y^2}\;+\;\tfrac12\,\ln\bigl|\,y \;+\;\sqrt{\,1+y^2\,}\bigr|\;+\;C.

因此,

F(y)  =  y22  +  y21+y2  +  12lny+1+y2  +  C.F(y) \;=\;\frac{y^2}{2} \;+\;\frac{y}{2}\,\sqrt{1 + y^2} \;+\;\frac12\,\ln\Bigl|\,y + \sqrt{1 + y^2}\Bigr| \;+\;C.

2. 定积分 I(x)=03x ⁣(y+1+y2)dy\displaystyle I(x)=\int_{0}^{3x}\!(y + \sqrt{1 + y^2})\,\mathrm{d}y

根据牛顿-莱布尼茨公式,

I(x)  =  [F(y)]y=0y=3x  =  F(3x)    F(0).I(x) \;=\;\Bigl[F(y)\Bigr]_{\,y=0}^{\,y=3x} \;=\;F(3x)\;-\;F(0).
  • 计算 F(3x)F(3x)

    F(3x)=(3x)22  +  3x21+(3x)2  +  12ln3x  +  1+9x2.F(3x) = \frac{(3x)^2}{2} \;+\;\frac{3x}{2}\,\sqrt{\,1+(3x)^2\,} \;+\;\frac12\,\ln\Bigl|\,3x \;+\;\sqrt{\,1+9x^2\,}\Bigr|.

    F(3x)=9x22  +  3x21+9x2  +  12ln3x  +  1+9x2.F(3x) = \frac{9x^2}{2} \;+\;\frac{3x}{2}\,\sqrt{\,1+9x^2\,} \;+\;\tfrac12\,\ln\Bigl|\,3x \;+\;\sqrt{\,1+9x^2\,}\Bigr|.
  • 计算 F(0)F(0)

    F(0)  =  022+021+02+12ln0+1  =  0+0+12ln(1)  =  0.F(0) \;=\;\frac{0^2}{2} + \frac{0}{2}\sqrt{\,1+0^2\,} + \frac12\,\ln\bigl|\,0 + \sqrt{1}\bigr| \;=\;0 + 0 + \tfrac12\,\ln(1) \;=\;0.

因此

I(x)  =  F(3x)    0  =  9x22  +  3x21+9x2  +  12ln3x  +  1+9x2.I(x) \;=\;F(3x)\;-\;0 \;=\;\frac{9x^2}{2} \;+\;\frac{3x}{2}\,\sqrt{\,1+9x^2\,} \;+\;\tfrac12\,\ln\Bigl|\,3x \;+\;\sqrt{\,1+9x^2\,}\Bigr|.

3. 最终结果

03x ⁣(y  +  1+y2)dy  =  9x22  +  3x21+9x2  +  12ln ⁣3x  +  1+9x2.\boxed{ \int_{0}^{3x}\!\bigl(y \;+\;\sqrt{1+y^2}\bigr)\,\mathrm{d}y \;=\; \frac{9x^2}{2} \;+\;\frac{3x}{2}\,\sqrt{\,1+9x^2\,} \;+\;\tfrac12\,\ln\!\bigl|\,3x \;+\;\sqrt{1+9x^2}\bigr|. }

若题目隐含 x0x\ge 0,则 3x+1+9x2\lvert\,3x + \sqrt{1+9x^2}\rvert 可简写为 (3x+1+9x2)\bigl(3x + \sqrt{1+9x^2}\bigr),省去绝对值。

问题

02π(1cost)3dt\int_0^{2\pi}(1-\cos t)^3 \operatorname{d} t

思考

Breaking down the integral

I’m curious about the integral 02π(1cost)3dt\int_0^{2\pi} (1 - \cos t)^3 dt. After expanding and integrating each term, I find:

  • 02π1dt=2π\int_0^{2\pi} 1 dt = 2\pi
  • 02π3costdt=0\int_0^{2\pi} -3 \cos t dt = 0
  • 02π3cos2tdt=3π\int_0^{2\pi} 3 \cos^2 t dt = 3\pi
  • 02πcos3tdt\int_0^{2\pi} -\cos^3 t dt is next.

Confirming the result

I’ve verified 02πcos3tdt=0\int_0^{2\pi} \cos^3 t dt = 0 via substitution. Adding up the integrals of each term, the final result is 5π5\pi.

Piecing it together refining the integral

I’m revisiting 02π(1cost)3dt\int_0^{2\pi} (1 - \cos t)^3 dt, integrating each term carefully. The final result is 5π5\pi, ensuring no mistakes in the process.

Reasoned about trigonometric integral for 9 seconds

回答

下面给出详细的计算步骤:


1. 将被积函数展开

(1cost)3  =  (1)3    3(1)2(cost)  +  3(1)(cost)2    (cost)3.(1-\cos t)^3 \;=\;(1)^3 \;-\;3(1)^2(\cos t) \;+\;3(1)(\cos t)^2 \;-\;(\cos t)^3.

(1cost)3  =  1    3cost  +  3cos2t    cos3t.(1-\cos t)^3 \;=\;1 \;-\;3\cos t \;+\;3\cos^2 t \;-\;\cos^3 t.

故原积分可拆分为四部分:

02π(1cost)3dt  =  02π1dt    302πcostdt  +  302πcos2tdt    02πcos3tdt.\int_0^{2\pi} (1-\cos t)^3 \, dt \;=\;\int_0^{2\pi} 1 \, dt \;-\;3 \int_0^{2\pi} \cos t \, dt \;+\;3 \int_0^{2\pi} \cos^2 t \, dt \;-\;\int_0^{2\pi} \cos^3 t \, dt.

2. 依次计算各部分

  1. 02π1dt=2π.\displaystyle \int_0^{2\pi} 1 \, dt = 2\pi.

  2. 02πcostdt=sint02π=sin(2π)sin(0)=0.\displaystyle \int_0^{2\pi} \cos t \, dt = \sin t \Big|_0^{2\pi} = \sin(2\pi)-\sin(0)=0.
    因此 302πcostdt=0\displaystyle -3 \int_0^{2\pi}\cos t\,dt=0.

  3. 02πcos2tdt.\displaystyle \int_0^{2\pi} \cos^2 t \, dt.
    利用恒等式 cos2t=12(1+cos(2t))\cos^2 t = \tfrac12\bigl(1 + \cos(2t)\bigr):

    02πcos2tdt  =  02π12(1+cos(2t))dt  =  1202π1dt  +  1202πcos(2t)dt.\int_0^{2\pi} \cos^2 t \, dt \;=\;\int_0^{2\pi} \tfrac12\bigl(1 + \cos(2t)\bigr)\,dt \;=\;\tfrac12 \int_0^{2\pi} 1\,dt \;+\; \tfrac12 \int_0^{2\pi} \cos(2t)\,dt.
    • 第一个积分:12×2π=π.\tfrac12 \times 2\pi = \pi.
    • 第二个积分:12×[sin(2t)2]02π=0.\tfrac12 \times \Bigl[\tfrac{\sin(2t)}{2}\Bigr]_0^{2\pi}= 0.

    因此

    02πcos2tdt=π,302πcos2tdt=3π.\int_0^{2\pi} \cos^2 t \, dt = \pi, \quad\Longrightarrow\quad 3\int_0^{2\pi} \cos^2 t\,dt = 3\pi.
  4. 02πcos3tdt.\displaystyle \int_0^{2\pi} \cos^3 t \, dt.
    由于 cos3t\cos^3 t[0,2π][0,2\pi] 上对称分布,其正负部分抵消,结果为 0(也可做替换 u=sintu=\sin t 来验证)。
    因此 02πcos3tdt=0,\int_0^{2\pi} \cos^3 t \, dt = 0,
    02πcos3tdt=0.-\int_0^{2\pi} \cos^3 t \, dt = 0.


3. 汇总结果

将各项相加:

02π(1cost)3dt  =  2π  +  0  +  3π  +  0  =  5π.\int_0^{2\pi} (1-\cos t)^3 \, dt \;=\;2\pi \;+\;0 \;+\;3\pi \;+\;0 \;=\;5\pi.

结论:

02π(1cost)3dt  =  5π.\boxed{ \int_0^{2\pi}(1-\cos t)^3 \, dt \;=\; 5\pi. }

问题

01y(y2+1)32dy\int_{0}^{1} y(y^2 + 1)^{\dfrac 32} \operatorname{d} y

思考

Finished reasoning

回答

I=01y(y2+1)32dy.I=\int_{0}^{1} y\,(y^{2}+1)^{\tfrac32}\,dy .

1 代换 u=y2+1u=y^{2}+1

u=y2+1    du=2ydy    ydy=du2.u = y^{2}+1 \;\Longrightarrow\; du = 2y\,dy \;\Longrightarrow\; y\,dy = \frac{du}{2}.

y=0y=0u=1u=1;当 y=1y=1u=2u=2
于是

I=u=12(u)32du2=1212u32du.I = \int_{u=1}^{2} (u)^{\tfrac32}\,\frac{du}{2} = \frac12\int_{1}^{2} u^{\tfrac32}\,du.

2 计算幂函数积分

u32du=u5252=25u52.\int u^{\tfrac32}\,du = \frac{u^{\tfrac52}}{\tfrac52} = \frac{2}{5}\,u^{\tfrac52}.

因此

I=1225u5212=15(252152)=15(421).I = \frac12 \cdot \frac{2}{5}\,u^{\tfrac52}\Big|_{1}^{2} = \frac{1}{5}\Bigl(2^{\tfrac52}-1^{\tfrac52}\Bigr) = \frac{1}{5}\bigl(4\sqrt{2}-1\bigr).
01y(y2+1)32dy  =  4215\boxed{\displaystyle \int_{0}^{1} y\,(y^{2}+1)^{\frac32}\,dy \;=\; \frac{4\sqrt{2}-1}{5}}

分享这个问答