二面角最小值

创建于:2025年1月21日

使用 O1 回答 Chat01

问题

在平面四边形ABCD中,AB = AC = CD = 1,\angle ADC = 30^{\circ},\angle DAB = 120^{\circ}。将\triangle ACD沿AC翻折至\triangle ACP,其中P为动点。
求二面角A - CP - B的余弦值的最小值。

思考

Analysing the fold

I’m examining a quadrilateral ABCD in a plane, folding ACD\triangle ACD along AC to form ACP\triangle ACP, and focusing on the dihedral angle A-CP-B.

Determining the fold

Focusing on the movement of point D to point P in 3D space, ensuring line AC remains fixed. This involves examining the angle between planes ACP and ABC.

Analyzing angle notation

I’m examining the dihedral angle A-CP-B, which might denote the angle between planes ACP and BCP, with line CP as the hinge and points A and B on their respective planes.

Deciphering the angle

I’m considering the ambiguity of "二面角 A-CP-B" and exploring whether it refers to the angle formed by planes AC-P and BC-P or the lines AC and BC in the 3D shape.

Analyzing structures

I’m exploring if the question refers to a tetrahedron ABPC and its dihedral angle at edge PB, or the angle between planes ACP and BCP using line CP.

Understanding folding mechanics

Reflecting ACD\triangle ACD across line AC sends point D to a point P symmetrical to D across AC. This does not create a 3D shape; the figure stays in the plane.

Rotating the plane

I'm thinking about how rotating ACD\triangle ACD around line AC generates a circle of potential points for P, influencing the dihedral angle A-CP-B.

Analyzing plane interactions

Focusing on the dihedral angle formed by planes ACP and BCP, with CP as their intersection line, as P shifts, we seek the minimum cosine value of this angle.

Mapping out normal vectors

To minimize the cosine of the dihedral angle between planes ACP and BCP, I’m analyzing the relationship between the normal vectors of these planes within the tetrahedron ABPC.

Piecing together triangle properties

I’m gathering triangle ACD's side lengths and angles to identify the steepest dihedral angle. Using AD=1, AC=1, CD=1, and ADC=30\angle ADC=30^\circ, I’m calculating DAC\angle DAC.

Determining AD

Applying the law of cosines in triangle ADC, solving 1=AD2+13AD1 = AD^2 + 1 - \sqrt3 \cdot AD, yields AD=3AD = \sqrt3.

Calculating distance BD

OK, let me see. Using the law of cosines in triangle ABD with AB=1AB=1, DA=3DA=\sqrt3, and DAB=120\angle DAB=120^\circ, I found BD=4+3BD=\sqrt{4 + \sqrt3}.

Piecing together coordinates

I'm setting points A and B, noting C's position on a circle from A, and considering D's alignment with constraints. This involves systematic exploration for clarity.

Placing point D

Hmm, I’m thinking about D's location from A and B, using DAB=120\angle DAB=120^\circ and AD=3AD=\sqrt3, and dividing this angle by 2 to find D's precise spot.

Pinpointing pionts

I’ve identified points A, B, and D using geometric constraints. Now, I’m placing C such that AC=1, CD=1, and ADC=30\angle ADC=30^\circ, and parametrizing C as (x,y).

Pinpointing coordinates

I’m working out the coordinates of point C by solving the equations for AC and CD, ensuring the angle ADC=30\angle ADC=30^\circ. C's coordinates lie on the unit circle centered at A.

Ensuring vector alignment

I’m working through the dot product of DA\vec{DA} and DC\vec{DC}. With DA=3|\vec{DA}| = \sqrt3 and DC=1|\vec{DC}| = 1, I’m aligning DC\vec{DC} to DA\vec{DA} such that (DA,DC)=30\angle(DA, DC) = 30^\circ.

Breaking down the equation

Ensuring the dot product equals 3/23/2 by expanding and verifying DADC\vec{DA} \cdot \vec{DC} with DA=3|\vec{DA}| = \sqrt3 and cos(30)=3/2\cos(30^\circ) = \sqrt3/2.

Manipulating equations

I’m working through the dot product condition to express xx in terms of yy, then substituting it into the circle equation to solve for yy. This leads me to find possible yy values.

Verifying coordinates

I’m checking two possible CC coordinates by plugging them back into the equations. Both (0,1)(0,1) and (3/2,1/2)(- \sqrt3/2, 1/2) align with the conditions, making them valid solutions.

Mapping the terrain

I’m comparing the distances and positions of the two CC coordinates. Both are valid, and the shape's convexity is under consideration while ensuring no intersection issues with BB.

Mapping out rotations

OK, let me see. I’m thinking through how rotating triangle ACD around AC shifts point D to P in 3D space, with CP intersecting planes ACP and BCP, aiming for the minimal cos value of angle A-CP-B.

Pinpointing the angle

I’m figuring out that "A - CP - B" refers to the angle between planes ACP and BCP along line CP, aiming to find the minimal cos value of the dihedral angle.

Cracking the formula

I’m pulling together vector cross products of CA\vec{CA} and CP\vec{CP} with CB\vec{CB} and CP\vec{CP}. Parametrizing by θ\theta to simplify the dihedral angle calculation.

Synthesizing details

I’m pulling together fixed distances: AC=1, CP=1, AP=3\sqrt3. This setup aligns with the rigid 3D rotation around AC, ensuring consistent geometry throughout.

Considering various paths

I'm comparing different configurations for tetrahedron ABPC. Both align with the given constraints, though the problem remains open to further symmetry insights or other specific conditions.

Orienting the rotation

I'm analyzing how a 3D rotation around axis AC affects points A and C. The key is to keep everything around AC aligned, ensuring consistent distances.

Defining coordinates

I’m setting the axis AC as the y-axis in 3D, figuring out P's location as the circle of intersection of spheres around A and C, and thinking about the constraints of coordinates.

Placing points

I’m setting the points A, B, C, and D in 3D space, ensuring that AC=1. The fold is a rotation around the line from A to C, maintaining the 2D coordinates.

Mapping the rotation

I'm working through rotating triangle ACD around axis AC, finding that point D optionally moves to the other side of axis AC, with the rotation angle ranging from 0° to 180°.

Rotating the plane

I’m analyzing how D's rotation around axis AC affects the dihedral angle with B. Considering angles from 0° to 180°, I'll derive the new coordinates and evaluate the minimal cosine value.

Revolvating around the infinite line

I'm leaning towards rotating D around the infinite line through A and C, aligning with the infinite rotation axis.

Adjusting my approach

I’m redefining D as (0,1.5,0) plus a vector in the x-z plane, focusing on the infinite line through A and C. This new perspective aids in simplifying calculations.

Revolvating around AC

I'm digging into how D rotates around line AC. Projecting D onto the perpendicular axis and simplifying the y-coordinate journey demonstrates how this affects the rotation effectively.

Tracing D's movement

I’m thinking about how revolving D around AC forms a circle with radius r, calculated from D's distance to line AC. P is any point on this circle, with rotation angle α\alpha.

Strategizing the calculation

I’m piecing together the dihedral angle along CP in tetrahedron ABPC, using edge lengths and the Cayley-Menger formula to find cos(ϕ)\cos(\phi) and the angular distance from P to B.

Mapping edge lengths

I’m figuring out the dihedral angle at edge XY in tetrahedron A B C P, using a known formula with edge lengths and normal vectors to systematically approach the problem.

Analyzing changes

OK, I’m realizing that B's distance to P is influenced by the rotation angle. With B and C fixed in the plane, BC stays at 2\sqrt2.

Pinpointing points

I’m organizing the points A, B, C, and D in 3D space, noting that P is derived from rotating D around AC. Then, I calculate vector MD and its length 7/2\sqrt7/2.

Confirming calculations

I’ve checked the distance from the midpoint of AC to D, ensuring it’s 7/2\sqrt7/2. Now, I’m focusing on rotating vector MD around axis AC by angle α\alpha.

Mapping rotation steps

OK, I'm thinking through the process of rotating vector MD around the y-axis. Translating by M-M, then rotating and translating back, to find the new location of P.

Adjusting my method

I’m rethinking the rotation of D around the y-axis through A as axis AC intersects the plane, ensuring P’s position follows the rotation dynamics.

Mapping the rotation

I’m figuring out how to rotate D around the y-axis through A. Keeping the y-component fixed, I’m rotating the orthogonal part in the x-z plane, then translating it back to A.

Tracking P's position

I'm piecing together P's coordinates as I rotate D around the y-axis, ensuring the y-component stays constant while adjusting the orthogonal part (P(α)P(\alpha)).

Understanding vector roles

I’m piecing together vectors CP(α)\vec{CP}(\alpha) and AP(α)\vec{AP}(\alpha) to determine the dihedral angle between planes ACP(α\alpha) and BCP(α\alpha). This helps track P's movement.

Mapping out normal vectors

OK, let’s simplify by using AC×AP(α)\vec{AC} \times \vec{AP}(\alpha) for ACP(α\alpha), and BC×BP(α)\vec{BC} \times \vec{BP}(\alpha) for BCP(α\alpha). This helps find the minimal cos ϕ(α)\phi(\alpha).

Extracting normal vectors

I’ve mapped out the cross product AC×AP(α)\vec{AC} \times \vec{AP}(\alpha), yielding n1(α)=32(sinα,0,cosα)n1(\alpha) = \frac{\sqrt3}{2}(-\sin\alpha, 0, \cos\alpha). Now, I’ll apply similar steps for n2(α)n2(\alpha).

Calculating cross product

I’m gathering normal vector n2(α)=32(32sinα,32cosα)n2(\alpha) = \frac{\sqrt3}{2}( -\frac{\sqrt3}{2}\sin\alpha, \frac{\sqrt3}{2}\cos\alpha ) by evaluating BC×BP(α)\vec{BC} \times \vec{BP}(\alpha).

Mapping normal vectors

I’m piecing together vector n2(α)n2(\alpha) using BC\vec{BC} and BP(α)\vec{BP}(\alpha), ensuring accurate coefficients for each component to calculate n1(α)n2(α)n1(\alpha) \cdot n2(\alpha).

Mapping the connections

OK, I’ve figured out the dot product n1(α)n2(α)n1(\alpha) \cdot n2(\alpha), combining the coefficients and components of the vectors to determine the dihedral angle between planes ACP(α\alpha) and BCP(α\alpha).

Figuring out the dot product

Summing the components of n1(α)n1(\alpha) and n2(α)n2(\alpha), and noting n1(α)|n1(\alpha)| and n2(α)|n2(\alpha)| are constants, simplifies the calculation.

Piecing together vector lengths

I’ve worked out the length of BC\vec{BC} by adding squares of the components for each vector and simplifying terms, concluding with the final expression for n2(α)|n2(\alpha)|.

Refining the expression

OK, let me see. Standardizing the denominators and simplifying terms leads to a more refined expression for cosϕ(α)\cos \phi(\alpha), involving familiar constants and functions.

Mapping out the function

I’ve redefined cosϕ(α)\cos \phi(\alpha) in terms of x=cosαx = \cos\alpha, simplifying to f(x)f(x). Now, I’m exploring derivatives and monotonicity to find the minimal value.

Breaking down the process

I’m figuring out if 73x223x7 - 3x^2 - 2\sqrt3 x stays positive for xx in [1,1][-1, 1], then analyzing f(x)f'(x) to see if f(x)f(x) is monotonic.

Simplifying and deriving

Working through the derivative expressions, simplifying N(x)N(x) and Z(x)Z(x), and examining their relationships to confirm if they stay positive within the identified range.

Piecing together

I expanded and combined terms from Z(x)Z(x), ensuring all signs are correct. This helps in understanding the composite behaviors and results of the function.

Identifying the critical point

I found the critical point by solving Z(x)=0Z(x) = 0, giving x=33x = \frac{\sqrt3}{3}. This value is within the interval [1,1][-1,1].

Confirming the minimum

I determined that x=33x = \frac{\sqrt3}{3} is the minimum point. Evaluating f(x)f(x) at the endpoints and critical points shows f(33)f(\frac{\sqrt3}{3}) is the smallest.

Verifying endpoint values

I confirm that f(1)=1f(-1) = 1 and f(1)f(1) match the expected values. However, a degenerate case when α=π\alpha = \pi could lead to no dihedral angle.

Confirming calculations

I verified that f(1)=1f(1) = 1. Interestingly, both endpoints yield cos(ϕ)=1\cos(\phi) = 1, indicating that the pleat angle might be 0 or 180.

Assessing function behavior

I noticed that f(33)=13f(\frac{\sqrt3}{3}) = \frac{1}{\sqrt3}, marking the minimum value of cos(ϕ)\cos(\phi). This function decreases to 33\frac{\sqrt3}{3} before increasing back to 1.

Thought about 二面角余弦最小值,持续 3m 42s

回答

分析思路概要:

  1. 在原平面内确定四边形 ABCDABCD 的位置以及边长关系。
    已知

    AB=AC=CD=1,ADC=30,DAB=120.AB = AC = CD = 1,\quad \angle ADC = 30^\circ,\quad \angle DAB = 120^\circ.

    先可用余弦定理在三角形 ADCADC 中求得

    AD=3.AD = \sqrt{3}.

    再在三角形 ABDABD 中求得

    BD=4+3.BD = \sqrt{4 + \sqrt{3}}.

    不过后面更关键的是点 A,B,C,DA,B,C,D 的“相对”位置以及如何在空间中“翻折”(DD 绕着 ACAC 旋转到 PP)。

  2. 在平面中给出一个方便的坐标放置。
    可以将

    A=(0,0),B=(1,0).A = (0,0),\quad B = (1,0).

    为满足 DAB=120,  AD=3\angle DAB = 120^\circ,\; AD = \sqrt{3}, 可令

    D=(32,32).D = \bigl(-\tfrac{\sqrt{3}}{2},\,\tfrac{3}{2}\bigr).

    另外还需满足   AC=1,  CD=1,  ADC=30\;AC = 1,\;CD = 1,\;\angle ADC = 30^\circ, 这会给出两种可能的 CC 坐标。其中一种较“简单对称”的选取是

    C=(0,1).C = (0,1).

    这样,四边形 ABCDABCD 就嵌在 xyxy-平面(z=0z=0 平面)里。

  3. 将三角形 ACDACD 沿 ACAC “翻折”到空间:等价于让 DD 绕“轴” ACAC 在三维中转动。

    • 在所选坐标下, A=(0,0,0),C=(0,1,0),D=(32,32,0),B=(1,0,0).A=(0,0,0),\quad C=(0,1,0),\quad D=\Bigl(-\tfrac{\sqrt{3}}{2},\,\tfrac{3}{2},\,0\Bigr),\quad B=(1,0,0).
    • “折叠”就是在三维中绕直线 ACAC(即绕 yy-轴上一段)做刚体旋转。设旋转角为 α\alpha。记 AD=(32,32,0).\vec{AD} = (-\tfrac{\sqrt{3}}{2},\,\tfrac{3}{2},\,0). 将其绕 yy-轴(过点 AA) 旋转 α\alpha 后得到新向量 AP(α)\vec{AP}(\alpha)。于是 P(α)  =  A+Ry(α)(AD)  =  (32cosα,  32,  32sinα).P(\alpha) \;=\;A+R_{y}(\alpha)\bigl(\vec{AD}_\perp\bigr) \;=\; \bigl(-\tfrac{\sqrt{3}}{2}\cos\alpha,\;\tfrac{3}{2},\;-\tfrac{\sqrt{3}}{2}\sin\alpha\bigr). 这正是点 DDACAC 旋转到 PP 的轨迹参数方程。
  4. 所求二面角 (ACPB)\angle(A-CP-B) 即四面体 ABCPABCP 中沿棱 CPCP 的二面角。

    • 二面角沿棱 CPCP 即面 ACPACP 与面 BCPBCP 的夹角。可用“法向量点积公式”来求:

      cosϕ  =  (n1,n2)n1  n2,\cos\phi \;=\; \frac{\,\bigl(\mathbf{n}_1,\mathbf{n}_2\bigr)\,} {\|\mathbf{n}_1\|\;\|\mathbf{n}_2\|},

      其中   n1\;\mathbf{n}_1 是平面 ACPACP 的法向量,   n2\;\mathbf{n}_2 是平面 BCPBCP 的法向量。

    • 具体做法:

      n1(α)  =  AC×AP(α),n2(α)  =  BC×BP(α).\mathbf{n}_1(\alpha) \;=\;\vec{AC}\times \vec{AP}(\alpha), \quad \mathbf{n}_2(\alpha) \;=\;\vec{BC}\times \vec{BP}(\alpha).

      将各点坐标、向量在上述坐标系里写出,做叉乘、再点乘,最后化简并分析随 α\alpha (或 cosα\cos\alpha) 的变化趋势。

  5. 经过较为细致的叉乘与化简,得到

    cosϕ(α)  =  f(x)  =  33x37    3x2    23x,其中 x=cosα.\cos\phi(\alpha) \;=\; f(x) \;=\; \frac{3 - \sqrt{3}\,x}{\,\sqrt{3}\,\sqrt{\,7 \;-\;3\,x^2 \;-\;2\,\sqrt{3}\,x\,}\,}, \quad \text{其中 } x = \cos\alpha.

    并且 α[0,π]\alpha\in[0,\pi] 对应 x=cosα[1,1].x=\cos\alpha\in[-1,1].

  6. cosϕ(α)\cos\phi(\alpha)α[0,π]\alpha\in[0,\pi] 上的最小值。

    • x=cosα[1,1], x = \cos\alpha \in [-1,\,1], 令 (\displaystyle f(x) = \frac{3 - \sqrt{3},x} {\sqrt{3},\sqrt{,7 -3,x^2 -2,\sqrt{3},x,}}. )
    • 计算端点:
        f(1)=1,f(1)=1.\;f(-1)=1,\quad f(1)=1.
      这对应“尚未真正翻起”(或翻到底)的情形,二面角趋于 00^\circ,故 cosϕ=1\cos\phi=1
    • 对区间 [1,1][-1,1] 做求导,找到驻点 x=33x=\tfrac{\sqrt{3}}{3},经检验此处给出 极小值。代入可得 f(33)  =  13    0.57735. f\Bigl(\tfrac{\sqrt{3}}{3}\Bigr) \;=\; \frac{1}{\sqrt{3}} \;\approx\;0.57735\,.

    因而整段区间上,cosϕ\cos\phi 的最小值即

      13  .\boxed{\;\frac{1}{\sqrt{3}}\;}.

结论

折叠过程中,二面角 (ACPB)\angle(A-CP-B) 的余弦值能够达到的最小值

  13  .\boxed{\;\frac{1}{\sqrt{3}}\;}.

这也意味着,当 cosα\cos\alpha 取到 33\tfrac{\sqrt{3}}{3} 时,对应的那一“翻折”角度最能“张开”面 ACPACP 与面 BCPBCP,其二面角 ϕ\phi 约为 arccos(13)54.7356\arccos\bigl(\tfrac{1}{\sqrt{3}}\bigr)\approx 54.7356^\circ

分享这个问答