7x7 Skyscrapers Solver
创建于:2025年1月18日
创建于:2025年1月18日
Solving the puzzle
I'm working through a 7x7 Skyscrapers puzzle, ensuring each row has unique values from 1 to 7, and no column duplicates. The goal is to determine the number of skyscrapers visible from the given hints.
Crafting a strategy
I’m precomputing permutations of [1..7], storing their visibility and values. Assigning permutations to rows while ensuring column constraints will be a crucial step, using advanced backtracking with pruning.
Pulling together constraints
I'm analyzing row and column constraints, leveraging constraint propagation or advanced backtracking with strong pruning. The aim is to match permutations effectively while ensuring no duplicates in columns.
Crafting the function
I’m gathering 28 clues in a specific format to solve the 7x7 puzzle. The function will match these clues with permutations, checking for column constraints and visibility.
Laying out the options
I’m listing all 7x7 permutations and assessing their visibility from left and right. Then, I’ll form "possibleRows" with valid permutations, respecting given clues.
Piecing together clues
I'm mapping out how the clues align with specific row and column indices. This allows for the creation of dictionaries storing permutations that meet each left and right clue combination.
Filling in the details
I'm considering a backtracking method to fill the 7x7 grid, ensuring column constraints. Each cell value will be checked against computed permutations and visibility constraints.
Mapping valid permutations
I’m working on validating permutations for each row and column, ensuring they meet visibility clues. This approach involves thorough backtracking to avoid column conflicts.
Piecing together the puzzle
I’m crafting a recursive function for placing rows, ensuring no column conflicts by checking permutations and tracking grid progress. Then, I’ll review column constraints for a valid grid.
Pruning early
I'm exploring methods to streamline column constraints by identifying valid prefixes for each permutation. This approach should simplify the process considerably.
Crafting the solution
I’m finalizing a JavaScript function to solve the Skyscrapers puzzle. It involves generating permutations, calculating visibility clues, and deploying backtracking with prefix pruning.
Mapping the steps
I’m outlining a detailed JavaScript function to solve the Skyscrapers puzzle, ensuring clarity with well-commented code, and incorporating a concise implementation approach.
Refining the approach
I’m considering prefix sets and pruning for efficient backtracking, targeting an optimal solution for the Skyscrapers puzzle. This streamlined method should significantly cut down on complexity.
Thought about skyscraper puzzle solver для 25 секунд
Below is an example of a reasonably optimized JavaScript backtracking solver for the 7×7 Skyscrapers puzzle. The core ideas behind making it run in time are:
This approach is a lot faster than naive backtracking, because it cuts out enormous portions of the search space up front.
There are permutations of the numbers 1 through 7. We can generate them once and reuse them.
For each permutation, we calculate:
visibleFromLeft(perm)
: how many skyscrapers can be "seen" from the left edge.visibleFromRight(perm)
: how many skyscrapers can be "seen" from the right edge.A skyscraper is "visible" when it is taller than all skyscrapers in front of it (from that viewpoint). For example, in a row [2, 1, 4, 3, 5, 7, 6]
:
2
is seen first,1
is smaller than 2, so it’s hidden,4
is taller than 2, so it's seen,3
is smaller than 4, hidden,5
is taller than 4, so it's seen,7
is taller than 5, seen,6
is smaller than 7, hidden.2,4,5,7
, which is 4 skyscrapers.visibleFromLeft
matches that clue. Same for the right clue.visibleFromLeft
(when read top-down) matches that clue. Same for the bottom clue.This gives us:
rowPerms[r]
: a list of all permutations valid for row given its left/right clues.colPerms[c]
: a list of all permutations valid for column given its top/bottom clues.We place rows one by one:
p
from rowPerms[r]
.p[c]
is not already used in previous rows (no duplication in the column).colPerms[c]
. If it cannot, prune immediately.If all checks pass, accept p
for row and move on to row . If we fill all 7 rows successfully, we have a candidate grid. Finally, we can do a final consistency check on columns (though if we've pruned thoroughly, it should already match).
function solvePuzzle(clues) { // Clue order on Codewars (same as the smaller 4x4, 6x6 puzzles): // // clues[0..6] => top clues for columns 0..6 (looking downward) // clues[7..13] => right clues for rows 0..6 (looking leftward) // clues[14..20] => bottom clues for columns 0..6 (looking upward) // clues[21..27] => left clues for rows 0..6 (looking rightward) // // Each clue is 0 if not specified. const N = 7; // Extract the clues for each row/column for easier reference const topClues = clues.slice(0, N); // columns top->down const rightClues = clues.slice(N, 2*N); // rows right->left const bottomClues = clues.slice(2*N, 3*N); // columns bottom->up const leftClues = clues.slice(3*N, 4*N); // rows left->right // 1) Generate all permutations of [1..7]. const allPerms = generatePermutations(N); // 2) Precompute visibility from left and right for each permutation // We'll store them in an object for quick access. const permInfo = allPerms.map(perm => ({ perm, left: countVisibleFromLeft(perm), right: countVisibleFromLeft(perm.slice().reverse()) })); // 3) Build possible row permutations (rowPerms[r]) // that match row's left clue and right clue (if nonzero). const rowPerms = []; for (let r = 0; r < N; r++) { const leftReq = leftClues[r]; const rightReq = rightClues[r]; rowPerms[r] = permInfo .filter(info => { if (leftReq !== 0 && info.left !== leftReq) return false; if (rightReq !== 0 && info.right !== rightReq) return false; return true; }) .map(info => info.perm); } // 4) Build possible column permutations (colPerms[c]) // that match top clue and bottom clue (if nonzero). // We'll also store prefix sets to quickly check feasibility. const colPerms = []; for (let c = 0; c < N; c++) { const topReq = topClues[c]; const bottomReq = bottomClues[c]; colPerms[c] = permInfo .filter(info => { // For columns, reading top -> down is the "left" viewpoint // and reading bottom -> up is the "right" viewpoint. if (topReq !== 0 && info.left !== topReq) return false; if (bottomReq !== 0 && info.right !== bottomReq) return false; return true; }) .map(info => info.perm); } // 4b) Build a quick "prefix set" for each column c. // prefixSet[c][rowCount] is a Map from a string of rowCount values -> boolean, // telling us if that prefix can appear in at least one of the colPerms[c]. const prefixSet = colPerms.map(colList => buildColumnPrefixSets(colList)); // Prepare the result grid const solution = Array.from({length: N}, () => Array(N).fill(0)); // Backtracking function function backtrack(row) { // If we've assigned all rows, we're done if (row === N) { return true; } // Try each candidate permutation for this row for (const perm of rowPerms[row]) { // Check column conflicts & prefix feasibility let valid = true; for (let c = 0; c < N; c++) { const val = perm[c]; // Check if val is already used in column c (by previous rows) for (let r2 = 0; r2 < row; r2++) { if (solution[r2][c] === val) { valid = false; break; } } if (!valid) break; // Check prefix feasibility: // the partial column is [solution[0][c], ..., solution[row-1][c], val] const prefixArray = []; for (let r2 = 0; r2 < row; r2++) { prefixArray.push(solution[r2][c]); } prefixArray.push(val); const prefixKey = prefixArray.join(','); // If no column permutation can have this prefix, prune if (!prefixSet[c][row+1].has(prefixKey)) { valid = false; break; } } if (!valid) { continue; } // If we get here, perm is valid for row "row" solution[row] = perm; // Recurse if (backtrack(row + 1)) { return true; } // Otherwise backtrack } return false; } // Run the backtracking backtrack(0); return solution; } /** * Generate all permutations of [1..n]. */ function generatePermutations(n) { const result = []; const nums = Array.from({length: n}, (_, i) => i+1); function permute(arr, start) { if (start === arr.length) { result.push(arr.slice()); return; } for (let i = start; i < arr.length; i++) { [arr[start], arr[i]] = [arr[i], arr[start]]; permute(arr, start+1); [arr[start], arr[i]] = [arr[i], arr[start]]; } } permute(nums, 0); return result; } /** * Returns how many buildings are visible from the left side of a permutation. */ function countVisibleFromLeft(perm) { let visible = 0; let maxSoFar = 0; for (let i = 0; i < perm.length; i++) { if (perm[i] > maxSoFar) { visible++; maxSoFar = perm[i]; } } return visible; } /** * Build a set of valid prefixes for a column, up to length N, * given the list of valid permutations for that column. * * prefixSet[c][k] = a Set of strings that represent the first k elements * of some permutation in colPerms[c]. * * E.g., if k=3 and a valid column permutation is [2, 5, 7, 1, 6, 4, 3], * then the prefix [2,5,7] => "2,5,7" will be in the set. */ function buildColumnPrefixSets(colList) { const n = colList[0].length; // 7 // prefixSets[k] = Set of prefix of length k as a string const prefixSets = Array.from({ length: n+1 }, () => new Set()); // The empty prefix of length 0 is always valid prefixSets[0].add(''); for (const colPerm of colList) { // Build cumulative prefix strings let prefix = []; for (let k = 1; k <= n; k++) { prefix.push(colPerm[k-1]); prefixSets[k].add(prefix.join(',')); } } return prefixSets; }
Permutation Generation
generatePermutations(7)
produces all 7! permutations of [1,2,3,4,5,6,7]
.
Visibility Precomputation
For each permutation, we store its left
and right
visibility counts to compare against clues quickly.
Row/Column Clues Filtering
rowPerms[r]
keeps only the permutations that satisfy the row 's leftClue
and rightClue
(if given).colPerms[c]
keeps only the permutations that satisfy the column 's topClue
and bottomClue
.Prefix Feasibility Sets
For each column , we build prefixSet[c]
, a structure that lets us quickly check whether a partial column can be the beginning of some valid column permutation in colPerms[c]
. This is stored as a set of comma-joined strings representing each possible prefix.
Backtracking
We assign row 0, row 1, ... row 6 in turn. For each candidate permutation of row :
"2,5"
for the first two rows in a column) and see if it's in prefixSet[c][r+1]
. If not, we prune immediately.Solution Returned
Once all 7 rows are assigned consistently, we have our solution grid, which is then returned.
Given an input array clues
of length 28, call:
const solvedGrid = solvePuzzle(clues); console.log(solvedGrid);
solvedGrid
will be a 7×7 array of numbers 1..7 satisfying all Skyscraper conditions.
This approach, with prefix pruning and precomputation of valid permutations per row and per column, is usually fast enough to solve typical 7×7 puzzles within a few seconds (or less) in JavaScript.