收敛性与紧集列

创建于:2024年11月22日

使用 O1 Preview 回答 Chat01

问题

例 4.2.6
E(Ω)\mathcal{E}(\Omega):设 Ω\OmegaRn\mathbb{R}^n 中的任意开集,又设 KmK_m 是一串相对于 Ω\Omega 的紧集,适合

K1K2K3KmΩ,m=1Km=Ω,K_1 \subset K_2 \subset K_3 \subset \cdots \subset K_m \subset \cdots \subset \Omega, \quad \bigcup_{m=1}^\infty K_m = \Omega,

并令

φm=αmmaxxKmαφ(x)(m=1,2,)\varphi\|_m = \sum_{|\alpha| \leq m} \max_{x \in K_m} |\partial^\alpha \varphi(x)| \quad (m = 1, 2, \ldots)

E(Ω)\mathcal{E}(\Omega) 表示带有可数范数 {φm}m=1{\{\|\varphi\|_m}\}_{m=1}^\infty 的线性空间 C(Ω)C^\infty(\Omega),则 E(Ω)\mathcal{E}(\Omega) 是一个 BB^* 空间(易证)。按定义,为了 φj0 (E(Ω))\varphi_j \to 0 \ (\mathcal{E}(\Omega)),必须

mN, N=N(ε,m),\forall m \in \mathbb{N}, \ \exists N = N(\varepsilon, m),, 使得maxxKmαφj(x)<ε(αm, j>N)\max_{x \in K_m} |\partial^\alpha \varphi_j(x)| < \varepsilon \quad (\forall |\alpha| \leq m, \ \forall j > N),

或者说,在每一个相对于 Ω\Omega 的紧集 KmK_m 上,直到 mm 次导数一致收敛于 00


请证明:E(Ω)\mathcal{E}(\Omega) 上的收敛性与紧集列 Km{K_m} 的选择无关,即按不同的紧集列定义出的两组可数半范数是等价的。

思考

细腻地探讨。定义了一个子集的空间,通过序列定义的完备空间,其中每个有限范数定义在紧子集上。注意,这样的空间表现出一致收敛的属性。

界定标准

我在探讨\varphi_j \to 0在\mathcal{E}(\Omega)中的收敛性。要证明,任意\varepsilon和m,存在N使得对于所有的\alpha ≤ m和j > N,最大值\max_{x \in K_m} |\partial^\alpha \varphi_j(x)|小于\varepsilon。这提示我,在不同的紧致子集K_m的序列选择差异时,收敛的拓扑结构是一致的。

证明半范数等价性

我正在证明,来自于不同紧致子集序列的半范数是等价的。特别地,我看着任何两个递增到Ω的紧致子集序列 {K_m} 和 {K_m'},存在函数 c_{m,m'},使得对于所有 \varphi \in \mathcal{E}(\Omega),存在常数 C_{m,m'} > 0 使得 |\varphi|m \leq C{m,m'} |\varphi|_{m'}'。这让我思考,如何通过这些函数来比对那些序列。

选择序列集

考虑选择紧致子集序列 {K_m} 和 {K_m'},其中 K_m ⊂ K_{m+1},且会合成Ω。

证明半范数族拓扑等价性

进一步细化范围

探讨範數等價性

我正在思考通过选择合适的泛函定义,如何建立範數之间的等价关系,从而定义相同的拓扑结构。

回答

To prove that the convergence in E(Ω)\mathcal{E}(\Omega) is independent of the choice of the sequence of compact subsets KmK_m, we need to show that any two such sequences define equivalent families of seminorms, and thus the same topology on E(Ω)\mathcal{E}(\Omega).

Let’s consider two sequences of compact subsets:

  1. {Km}m=1\{K_m\}_{m=1}^\infty, with K1K2ΩK_1 \subset K_2 \subset \cdots \subset \Omega and m=1Km=Ω\bigcup_{m=1}^\infty K_m = \Omega.
  2. {Km}m=1\{K_m'\}_{m=1}^\infty, with K1K2ΩK_1' \subset K_2' \subset \cdots \subset \Omega and m=1Km=Ω\bigcup_{m=1}^\infty K_m' = \Omega.

Define the seminorms associated with each sequence:

  • For {Km}\{K_m\}: φm=αmmaxxKmαφ(x).\|\varphi\|_m = \sum_{|\alpha| \leq m} \max_{x \in K_m} |\partial^\alpha \varphi(x)|.

  • For {Km}\{K_m'\}: φm=αmmaxxKmαφ(x).\|\varphi\|_m' = \sum_{|\alpha| \leq m} \max_{x \in K_m'} |\partial^\alpha \varphi(x)|.

Our goal is to show that these seminorms are equivalent, meaning that for each mm, there exist constants C1,C2>0C_1, C_2 > 0 and indices m,mm', m'' such that:

  1. φmC1φm\|\varphi\|_m \leq C_1 \|\varphi\|_{m'}' for all φE(Ω)\varphi \in \mathcal{E}(\Omega).
  2. φmC2φm\|\varphi\|_{m'}' \leq C_2 \|\varphi\|_{m''} for all φE(Ω)\varphi \in \mathcal{E}(\Omega).

Proof:

  1. For any fixed mm, there exists mm' such that KmKmK_m \subset K_{m'}':

    • Since k=1Kk=Ω\bigcup_{k=1}^\infty K_k' = \Omega and KmK_m is compact, it must be contained in some KmK_{m'}'.
    • Choose mmm' \geq m so that KmKmK_m \subset K_{m'}'.
  2. Relate the seminorms using the inclusion KmKmK_m \subset K_{m'}':

    • For all φE(Ω)\varphi \in \mathcal{E}(\Omega): φm=αmmaxxKmαφ(x)αmmaxxKmαφ(x)φm.\|\varphi\|_m = \sum_{|\alpha| \leq m} \max_{x \in K_m} |\partial^\alpha \varphi(x)| \leq \sum_{|\alpha| \leq m} \max_{x \in K_{m'}'} |\partial^\alpha \varphi(x)| \leq \|\varphi\|_{m'}'.
  3. Similarly, for any fixed mm', there exists mm'' such that KmKmK_{m'}' \subset K_{m''}:

    • Since k=1Kk=Ω\bigcup_{k=1}^\infty K_k = \Omega and KmK_{m'}' is compact, it must be contained in some KmK_{m''}.
    • Choose mmm'' \geq m' so that KmKmK_{m'}' \subset K_{m''}.
  4. Relate the seminorms using the inclusion KmKmK_{m'}' \subset K_{m''}:

    • For all φE(Ω)\varphi \in \mathcal{E}(\Omega): φm=αmmaxxKmαφ(x)αmmaxxKmαφ(x)φm.\|\varphi\|_{m'}' = \sum_{|\alpha| \leq m'} \max_{x \in K_{m'}'} |\partial^\alpha \varphi(x)| \leq \sum_{|\alpha| \leq m'} \max_{x \in K_{m''}} |\partial^\alpha \varphi(x)| \leq \|\varphi\|_{m''}.
  5. Combining the inequalities:

    • This shows that for appropriate indices m,mm', m'', the seminorms satisfy: φmφmφm.\|\varphi\|_m \leq \|\varphi\|_{m'}' \leq \|\varphi\|_{m''}.
    • Therefore, the seminorms m\|\cdot\|_m and m\|\cdot\|_m' are equivalent up to reindexing.

Conclusion:

Since the seminorms defined by different sequences of compact subsets are equivalent, they induce the same topology on E(Ω)\mathcal{E}(\Omega). Consequently, convergence in E(Ω)\mathcal{E}(\Omega) does not depend on the specific choice of the sequence {Km}\{K_m\}.

Answer:

Because any two sequences of compact subsets increasing to Ω can be used to define equivalent families of seminorms, the convergence in E(Ω)\mathcal{E}(\Omega) is independent of the choice of compact subsets KmK_m; thus, the different seminorms define the same topology.

分享这个问答