from Crypto.Util.number import * from random impor...

Tạo vào: 10 tháng 2, 2026

Trả lời bằng GPT-5.2 Pro bởi Chat01

Câu hỏi

from Crypto.Util.number import *
from random import randint

flag = b"flag{*********}"
s = bytes_to_long(flag)
p = 167264670864949699243357401113153413519395292842449702828997572587750744834109623044157691349874788443790813991233493187794208993416335499200258467667251878377809772494422224799463216535077998226807333354887520008430717730163942897177961332163562331189299169807359374076510657092682573089393224676206465299481
k = 128
d = 2

www=[54205988582886778833457799475098659028926887812765603455747115607215401361621742985106290116194861063767444600441258507426158129383071764259602929436444817489805442555547918972855579813914210680247478024861432102196251008812915761410423068240889240928469255876570421762674154189999999792058567237621394396271,
4343825245377051766505786024070186727131854242224107955057658697141719731502298050775438124008054391043556285558776400249635735928087246121689525142171481609750710988915493632267888553552842244530750198651613701139984013488023194742902848230076510741997604547571596886981566463754331330080252181562481666127]
data = []
for _ in range(d):
t = www[_]
inv = inverse(s+t,p)
h = (inv >> k) << k
data.append((t, h))
print(p)
print(data)
'''
167264670864949699243357401113153413519395292842449702828997572587750744834109623044157691349874788443790813991233493187794208993416335499200258467667251878377809772494422224799463216535077998226807333354887520008430717730163942897177961332163562331189299169807359374076510657092682573089393224676206465299481
[(54205988582886778833457799475098659028926887812765603455747115607215401361621742985106290116194861063767444600441258507426158129383071764259602929436444817489805442555547918972855579813914210680247478024861432102196251008812915761410423068240889240928469255876570421762674154189999999792058567237621394396271,
2546698704243987536016492442967166113447850717026761327623738213470629383370759333483184881495588176808273661168597885481456942923393620297008613216304247190570943812048945341256947796531532546196494257883630230367512634958046836640727905189456714715052293584431397022936421091296508421575965932945498177536),
(4343825245377051766505786024070186727131854242224107955057658697141719731502298050775438124008054391043556285558776400249635735928087246121689525142171481609750710988915493632267888553552842244530750198651613701139984013488023194742902848230076510741997604547571596886981566463754331330080252181562481666127,
2802720220541111900541354867712021493670777147149794113335529387112961462634010734123202153568969265423470761636550474743567712207627701527848956111416129699136305492622854346336413265233450906832479683876769460583246976169424803168278765255846550373688672750611910856303146814284162789519551077992712110080)]
'''
教我这道CTF密码学题目,inverse函数是模逆元吗,告诉我解题的原理

Suy nghĩ

Analyzing modular inverse

I'm digging into the challenge of determining ss involves modular inverses and bit manipulation, likely requiring polynomial construction and lattice reduction for resolution.

Calculating bit length

I'm using Python to determine the bit length of pp, which will assist in the modular inverse calculations. Parsing the data is a key step in this process.

Breaking down the problem

I'm examining the use of a 1024-bit prime pp and a 128-bit kk, which leaves the top 896 bits known. The challenge is to find xix_i using lattice methods due to the non-linearity of the modular inverse.

Assessing modular arithmetic

Considering the modular inverse and key properties to understand the interaction between ss and tt in congruences mod pp.

Linearizing equations

I'm working through linearizing congruences by adjusting for potential overshooting of s+tis + t_i beyond pp, ensuring consistency with modular inverses.

Reworking bilinear equations

Piecing together the equations, examining the error term, and considering small values for r_i and s.

Piecing together

I'm combining approximate rational methods, modular arithmetic, and lattice techniques to solve for s and q_i, aiming to reduce complexity and identify potential solutions.

Assuming small offsets

I’m assuming u_i ≈ t_i with a small s offset. This leads me to a modular congruence equation, isolating variables for easier resolution.

Applying modular arithmetic

Testing modulo 2^128 to simplify the equation, aiming to isolate variables and apply lattice techniques for solving the Hidden Number Problem, leveraging the leakage of most significant bits.

Taking a closer look

I’m considering Coppersmith's method to solve modular equations with small roots, leveraging lattice reduction for bivariate modular equations with shared variables and distinct small coefficients.

Verifying calculations

OK, let me see. I'm checking that H_i equals h_i right-shifted by 128, then working out the bit lengths.

Breaking down the equation

Analyzing the congruence and considering approximation methods to isolate and solve for ss, treating rir_i as a small, unknown variable.

Establishing constraints

I'm noting that ti+st_i + s is close to tit_i, leading to an approximation of qiyitip\frac{q_i}{y_i} \approx \frac{t_i}{p}.

Balancing the equation

I’m working through coefficients and cancellations involving y1 and y2, aiming to simplify expressions for further analysis.

Reworking equation

Piecing together the equation using modular arithmetic and lattices. Trying to eliminate q_i to simplify, but still tangled up. Progressing through each step might reveal the solution.

Consulting OpenAI's guidelines

The user asks about modular inverse and problem-solving principles, considering an explanation or lattice method. Checking feasibility of using Python's fpylll library for LLL implementation.

Determining fpylll's installation
Ensuring the presence of fpylll.

** assessing fpylll**

Exploring sympy's options

Wondering if symmetry's Matrix.LLL or .lll offers the LLL implementation needed.

Analyzing lattice attacks

I'm examining lattice attacks in sympy, considering continued fractions for rational reconstruction, and approximating reciprocals for (s+t) mod p. Solving simultaneous equations, I explore gcd calculations and leveraging Approximate Common Divisor problems.

Calculating inverse estimates

I’m working on approximating modular inverses by focusing on high bits. This involves using two polynomial equations to eliminate one variable, aiming for a manageable integer solution.

Breaking down modular inverses

I’m converting the equation to modular arithmetic, confirming that the difference of modular inverses equals the difference of the terms. This approach makes the problem more manageable and aligns the steps.

Mapping out a solution

I’m refining the equation to solve for small variables, considering modular arithmetic and bivariate Coppersmith method to sideline larger terms.

Using polynomial equations

I’m piecing together a polynomial equation to pinpoint small variables r1 and r2, possibly applying the Coppersmith method for steganography.

Formulating linear equations

I’m thinking through linear equations in r1 and r2. The idea is to use r_i as inv_i mod 2^128, aiming for a more straightforward approach in the calculations.

Unraveling polynomial structure

I’m examining multivariate Coppersmith to find small roots of a polynomial modulo p. Converting to a polynomial degree 2, I’m solving with lattices of monomials. Hm, let me see.

Evaluating polynomial structure

I’m examining a polynomial with terms involving r1 and r2. It appears to be bilinear and linear in r2, depending on r1. The next step involves rational reconstruction and modular arithmetic.

Securing modular roots

I'm outlining the bivariate Coppersmith technique for solving modular equations, considering small integer solutions and leveraging lattice methods for potential progress.

Strategizing factorization

I'm thinking about how to factor an equation modulo p by setting α = u/A, β = v/A, γ = w/A.

Analyzing modular equations

OK, let me see. I'm digging into modular equations where x and y are small but α and β are large. Considering Coppersmith's method for linear polynomials seems promising.

Working on polynomial equations

I’m piecing together the polynomial equations and considering lattice enumeration for small roots of bilinear polynomials.

Calculating with lattice

I’m thinking about solving the equation with 128-bit unknowns using lattice techniques. By applying modulus pp, I can compute polynomial coefficients within predefined bounds.

Transforming the equation

I’m working through the equation by creating a lattice with specific basis vectors and considering variable shifts to transform the bilinear equation into a linear form. This involves vector transformations and modular arithmetic techniques.

Investigating randomness

I’m working through using lattice techniques to find r1 by comparing approximate inverses of two random numbers. This approach might reveal small solutions through the hidden number problem.

Solving the equation

OK, let me see. I’m considering lattice methods and modular arithmetic for the equation. Comparing high and low bits, I estimate k at around 255 bits.

Revisiting constraints

OK, examining A and z’s integration, the constraints and reducing unknowns in the linear equation seemed plausible. Potentially, lattice methods like LLL can pinpoint solutions.

Shifting my approach

I’m working through a lattice methodology for solving the linear equation, aiming to find small, exact k. Checking constraints and handling variable relationships expands the solution possibilities.

Crunching coefficients

OK, let me see. Reducing A and u modulo p to keep them within bounds and observing their impact on k could refine the solution by managing coefficients better.

Implementing Coppersmith bivariate algorithm

I'm considering using the Coppersmith bivariate algorithm to solve the bilinear modular equations with small roots, focusing on lattice construction and short vector identification to achieve this.

Formulating polynomial set

I’m crafting a set of polynomials using lattice reduction (LLL) and the Coppersmith method for adept handling of bilinear modular equations. This approach ensures precise small roots identification.

Formulating equation

I’m setting up a bilinear polynomial in r1 and r2 to determine small roots using lattice reduction or the Coppersmith method, then reconstructing the inverse to find the flag.

Setting up polynomial equations

OK, let me see. I’m adjusting polynomial equations with p and x, y boundaries to pinpoint solutions using lattice methods and Gröbner bases.

Cracking the polynomial puzzle

I’m digging into the polynomial to pinpoint small roots using sympy and the Herrmann-May method. The challenge involves crafting a lattice basis and tweaking polynomial parameters for a more straightforward solution.

Examining polynomial lattices

I'm working through lattice methods for small root solutions, focusing on coefficients and considering the prime modulus. Evaluating polynomial interactions to find suitable lattices.

Identifying polynomial techniques

I'm examining lattice construction for polynomial f(x,y), aiming for small integer roots via Laurent series and resultant. Progressing through bivariate polynomials and polynomial congruences.

Piecing together polynomial relationships

Wondering if combining congruences can eliminate s and tie r1 and r2 together through substitution, but need closer examination of the resulting polynomial relationships.

Piecing together the approach

I’m thinking through bivariate Coppersmith's method for polynomial solving, focusing on a polynomial of degree 2 and small root bounds, to simplify polynomial equations.

Solving modular equations

I'm working through a modular equation with degrees 1 in each variable. By using a lattice with monomials {1, x, y, x y}, I can potentially express any polynomial combination.

Evaluating polynomial structures

I'm examining polynomial structures to construct lattices, focusing on methods like Jochemsz-May and considering shifts in y for bivariate polynomials.

Trying out different methods

I'm piecing together ways to solve for x, y, and k by using lattice reduction and possibly Euler's famous Hodge conjecture.

Implementing Coppersmith algorithm

I'm working on implementing the Coppersmith algorithm using sympy's LLL for bivariate polynomial equations, generating monomials, constructing coefficient matrices, and solving systems to find small roots.

Working through polynomial reduction

I’m reducing coefficients of polynomial f_mod modulo p, ensuring integer coefficients. This approach might simplify the solution, as it involves substituting smaller values and removing terms.

Mapping bivariate Coppersmith

I’m analyzing the Bivariate Coppersmith method by setting up the polynomial expression with different degrees and shifts. This approach increases efficiency and simplifies the process, especially when degrees are 1.

Choosing matrix size

Hmm, I’m thinking about a matrix dimension that matches the total number of polynomial monomials. This balance might maximize efficiency.

Noticing large coefficients

Considering sympy's nroots for integer solutions, but large coefficients of g(x,y) present a challenge.

Mapping out polynomial relationships

OK, let me see. I'm digging into deriving independent polynomials, each prompting y's elimination. This involves solving for y from one polynomial and substituting it into another.

Generating shifts

OK, let's create shifts for m=2.

Analyzing shifts and constants
I’m examining shifts[0] and their constant p^2, then identifying and compiling all distinct monomials from these shifts.

Considering matrix structures

OK, let me see. I’m thinking about sympy's Matrix.lll for integer matrices, which might need more rows than columns, and how scaling coefficients by X^a Y^b impacts this.

Drafting a method

I'm weaving together a method in sympy Poly to retrieve coefficients for specific monomials like xa*yb. This feels like solid progress in the implementation.

Applying LLL to M

I’m exploring the Lang's reduction method (LLL) for matrix M using Sympy. This involves utilizing columns for matrix operation.

Reaching clarity

I'm thinking through how to reduce the matrix dimension, considering LLL with 9 out of 14 polynomials or potentially transposing for better dimension usage.

Evaluating vector selection

I'm considering 14 vectors in Z^9 and need 9 linearly independent vectors to maintain a full-rank basis.

Taking a closer look

I’m considering picking 9 independent rows to form a basis and applying LLL. Let's see if the initial 9 rows are mutually independent.

Identifying pivot columns

Thinking through the rref of M to pinpoint linearly independent rows for row space exploration. This approach should clarify further.

Evaluating vstack approach
Considering vstack's effectiveness for implementation.

Choosing polynomial shifts

I’m working with rows 0 to 9, covering all shifts of p^2 through y^2 p^2. This setup doesn’t capture shifts with f, which are essential. So, we need to incorporate shifts involving f to accurately explain the lattice.

Establishing a foundation

I'm considering if f-related vectors, expressed through integer combinations, span the same space as constant vectors, despite their entries not divisible by p^2.

Forming a basis

I'm pulling together how a diagonal matrix might not span the full lattice, hinting that fractional coefficients might be necessary for the f rows.

Verifying the output

I’m thinking through Sympy's hermite_normal_form and whether it returns HNF as columns or rows for integer matrices, and if it ensures A = U H with a unimodular U.

Adjusting my approach

I’m thinking through lattice transformations by using LLL on transposed matrices. This entails reshaping columns to derive vectors, even though it alters the original lattice space.

Evaluating LLL implementation

OK, let me see. Sympy's LLL needs rows <= columns. I’m working through 14 basis vectors as columns in a 9x14 matrix, aiming to satisfy this requirement.

Reevaluating matrix size

Consulting basis vectors as columns means re-evaluating matrix size to 9x14, adhering to LLL algorithm requirements.

Testing sympy's lll

I’m working to reduce the matrix by testing sympy's lll on the transposed matrix, ensuring columns are treated as basis vectors. This leads me to refine the matrix's structure.

Consulting OpenAI's policies
I’m checking Mt.lll().

Evaluating alternatives

I'm considering LLL checks against huge numbers, tweaking delta, implementing our own LLL, or using Sage for polynomial rings.

Examining matrix rank

I'm fixing issues in a matrix with 9 rows and 14 columns. It seems the algorithm's exactness might be the problem. Let's see if LLL on a 9x9 matrix fixes it.

Transforming matrices
I’m turning H into an upper triangular matrix and leveraging unimodular properties to ensure row lattice consistency. This leads me to consider using the nonzero rows of H as basis vectors.

Verifying results

I’m mapping out the matrix dimensions and nonzero row indices. The matrix size is 14x9, and the nonzero rows are indexed.

Identifying dependencies

OK, let me see. I’m piecing together the matrix, and seeing some rows are dependent. The goal is to pinpoint 9 essential rows, possibly by examining the first 9.

Analyzing echelon forms

I’m mapping out the row-echelon form, thinking through how the last five rows could be zero. Turns out, sympy's hermite_normal_form might be in column-style instead of row-style.

Reinforcing matrix structure

OK, let me see. Each row has a leader among 0-8, and none are all zero. I'm thinking about the HNF of the transpose to pinpoint the column lattice basis.

Evaluating column basis after HNF

It's interesting to see that the Hermite Normal Form of M.T, a 9x14 matrix, results in a 9x9 matrix. This suggests that we might have identified a basis for the column lattice, which spans the columns of M.T, equivalent to the original row vectors.

Verifying matrix dimensions

I’m confirming HNF's columns form a basis for the lattice in Z9\mathbb{Z}^9. Now, I’m considering LLL for basis vectors by shaping a 9x9 matrix.

Reassessing the approach

Sympy's LLL fails with large numbers. Considering integer arithmetic or high-precision decimal fractions instead.

Navigating rational orthogonalization

I'm analyzing methods for Gram-Schmidt orthogonalization with rational numbers, considering fractions.Fraction, decimal.Decimal, or mpmath.mpf for precision.

Evaluating computation needs

Thinking through efficient ways to compute large rational numbers in Python, considering Fraction for large integers to handle overflow effectively.

Evaluating computational strategies

I’m mapping out the feasibility of implementing LLL for computing the small root from reduced basis and solving a polynomial system, possibly through modular arithmetic and LLL for three-dimensional approximation.

Formulating matrix structure

Constructing lattice matrix B, applying HNF and LLL for rational arithmetic, and mapping reduced vectors to polynomial combinations.

Calculating HNF of M.T

I'm working through calculating the Hermite Normal Form (HNF) of M.T, a 9x14 matrix, to identify 9 basis vectors for LLL, focusing on generating a full lattice in Z^9 and interpreting the reduced vector as a polynomial.

Handling computational tasks

I’m curious about computing HNF and sorting matrix entries. It’s interesting to see how deep I’m into handling big integers with fractions before running the LLL.

Growing complexity

I’m setting up a system using LLL with rational numbers. The challenge of maintaining feasible denominators while avoiding floating-point representation is forefront in the design process.

Calculating nearest integer

I’m rounding the nearest integer for specific matrix elements, ensuring accuracy by aligning values to exact fractions and adjusting for negative numbers.

Recomputing GS

I'm iterating through elements, swapping, and refreshing the Gram-Schmidt process for impacted indices. This approach leverages small n for manageable complexity.

Running the task

OK, I’m beginning to run 'LLL'. This involves following the steps and checking for possible errors.

Evaluating optimization strategies

OK, I’m piecing together how to streamline the algorithm by potentially employing mpmath or decimal for high-precision arithmetic, aiming to bypass overflow errors and enhance efficiency.

Evaluating precision

Considering mp.dps to manage large numbers and LLL. Exploring integer arithmetic with Python's Decimal for efficiency.

Weighing accuracy and feasibility

Evaluating precision for computing and using LLL for approximation, considering floating arithmetic for speed. Progressing through techniques like Gram-Schmidt simplification.

You’re working on refining integer vectors by converting them to floating-point using Gram-Schmidt orthogonalization, adjusting them with a matrix, reducing their size, and tweaking norms to ensure they meet Lovasz's consistency criteria.

Evaluating precision options

I’m pulling together the idea of tweaking precision and using incremental updates for speed. Exploring potential rounding errors with reduced precision.

Enhancing efficiency

I'm looking at Gram-Schmidt with fractions.Fraction for gradual updates. LLL might streamline integer arithmetic with decimal for mu. Progress feels steady and insightful.

Optimizing conversion

Hmmm, I’m thinking through converting integers to mpf once and using Python loops efficiently. This approach streamlines the process and enhances value calculation.

Evaluating methods

I'm assessing mp.prec settings for operator multiplication and considering gmpy2 for rational approximations.

Weighing research tools
I'm thinking about sageall for Python compatibility.

Considering efficiency

I'm thinking of using numpy with object dtype for quick computation. This ensures the algorithm finishes within a strict 45-second timeframe, optimizing efficiency and performance.

Weighing polynomial strategies

I'm thinking through polynomial equations with large integers. Strategies like GCD or quadratic solving could simplify or bypass the 60s limitation.

Understanding k

OK, let's break this down: k seems to be a constant factor times the product of x and y, coming in around 254 bits, with A/p being approximately 0.298.

Working through integer equations

I'm analyzing integer equations modulo p to simplify the problem and hypothesizing that guessing k could potentially streamline solving x and y.

Evaluating different strategies

I'm examining various methods like modular arithmetic and "meet-in-the-middle" to determine a formula for y, ensuring it remains an integer and is small.

Applying concepts

I'm mapping out the connection between modular inverses and data leaks, then detailing an attack using lattices and polynomial derivation.

Identifying polynomials

I’m working on finding independent polynomials that vanish over integers to solve for coefficients and reconstruct the original values.

Connecting initial ideas

OK, let's combine the conditions to confirm that the inequality holds, making the attack feasible.

Considering the attack vector

Calculating the attack's feasibility by comparing product bounds and lattice methods, ensuring values align well with the constraints.

Breaking down the method

I’m simplifying the explanation of partial leakage of the modular inverse, covering interpretation, modeling, equation derivation, polynomial elimination, lattice solving, and a Sage code example.

Verifying candidate solutions

I'm thinking through potential issues like mod p and checking if inverse(s+t_i,p) high bits align.

Reasoned for 40m 54s

Trả lời

先回答你最关心的点:Crypto.Util.number.inverse(u, v) 就是求模逆元——返回一个整数 u^{-1} (mod v),满足

uinverse(u,v)1(modv)u \cdot inverse(u,v)\equiv 1\pmod v

在 PyCryptodome 的文档里它就写的是 “The inverse of u mod v”。 (pycryptodome.readthedocs.io)


题目在“泄露”什么信息?

你代码里(把未知 flag 看成整数 ss)做了:

  • 取大素数 pp
  • 对两个已知随机数 t1,t2t_1,t_2
  • 计算 invi=(s+ti)1(modp)inv_i = (s+t_i)^{-1}\pmod p
  • 然后只输出 inv_i高位
    python
    h = (inv >> k) << k # k=128
    这等价于把 inv低 128 bit 直接抹掉置零,只留下高位。

所以对每个 ii 你实际上拿到的是:

invi=hi+ri,0ri<2128inv_i = h_i + r_i,\quad 0\le r_i < 2^{128}

其中:

  • hih_i 是你拿到的(低 128 位为 0 的)值
  • rir_i 是被隐藏的低 128 位(未知,但很小)

为什么 2 组数据就能破?

如果我们知道完整的 inviinv_i,那就能直接还原 ss

sinvi1ti(modp)s \equiv inv_i^{-1} - t_i \pmod p

但是你只知道 inviinv_i 的高位,所以单独一条数据不够。

关键是你给了 两条:同一个 ss,对应 (t1,h1)(t_1,h_1)(t2,h2)(t_2,h_2)。于是:

inv11t1inv21t2(modp)inv_1^{-1}-t_1 \equiv inv_2^{-1}-t_2 \pmod p

移项得:

inv21inv11t2t1(modp)inv_2^{-1} - inv_1^{-1} \equiv t_2 - t_1 \pmod p

两边乘上 inv1inv2inv_1inv_2(注意这是在模 pp 下合法的,因为 pp 是素数、逆元存在):

inv1inv2(t2t1)inv1inv2(modp)inv_1 - inv_2 \equiv (t_2-t_1)\, inv_1\, inv_2 \pmod p

这一步非常核心:把“逆”的关系变成了只含 inv1,inv2inv_1, inv_2 的方程。


把未知量换成“已知高位 + 小误差”

写成:

inv1=h1+x,inv2=h2+y,0x,y<2128inv_1 = h_1 + x,\quad inv_2 = h_2 + y,\quad 0\le x,y<2^{128}

代入上面的同余式:

(h1+x)(h2+y)(t2t1)(h1+x)(h2+y)(modp)(h_1+x) - (h_2+y) \equiv (t_2-t_1)(h_1+x)(h_2+y)\pmod p

展开后可以整理成一个**双线性(bilinear)**同余:

A+Bx+Cy+Dxy0(modp)A + Bx + Cy + Dxy \equiv 0 \pmod p

其中 A,B,C,DA,B,C,D 都能由 p,t1,t2,h1,h2p,t_1,t_2,h_1,h_2 计算出来。

此时未知量只有 x,yx,y,并且它们都被强约束在 <2128<2^{128} 的小范围内。


为什么要用格(LLL + Babai)?

因为这个同余里有 xyxy 项,不是普通线性方程。

一个非常实用的“CTF 技巧”是:引入新变量把它线性化

z=xyz = xy

则同余变成线性的:

Bx+Cy+DzA(modp)Bx + Cy + Dz \equiv -A \pmod p

现在我们要找的是一个满足上式的 (x,y,z)(x,y,z),并且有范围约束:

  • 0x<21280\le x < 2^{128}
  • 0y<21280\le y < 2^{128}
  • 0z<22560\le z < 2^{256}

这就是“小解的模线性方程”问题,非常适合用格方法做:

  • LLL 用于把格基约化,得到“更接近正交、含有短向量”的基。 (en.wikipedia.org)
  • Babai 最近平面算法(Nearest Plane / Nearest Hyperplane) 用于在 LLL 约化基上近似求解“最近向量问题 CVP”,把目标点投影回格里找到最近的格点。 (cims.nyu.edu)

直观理解:
我们构造一个格,使得格向量形如

(kp+Bx+Cy+Dz, x, y, z)(kp + Bx + Cy + Dz,\ x,\ y,\ z)

然后我们希望找到一个格向量,它的第一维刚好等于 Amodp-A \bmod p,同时后三维尽可能小(因为 x,y,zx,y,z 小)。这正是 CVP 的味道。


解题流程总结

  1. 写出: invi=(s+ti)1(modp),invi=hi+riinv_i=(s+t_i)^{-1}\pmod p,\quad inv_i=h_i+r_i
  2. 利用同一个 ss 消去 ss,得到只含 inv1,inv2inv_1,inv_2 的同余: inv1inv2(t2t1)inv1inv2(modp)inv_1-inv_2 \equiv (t_2-t_1)inv_1inv_2 \pmod p
  3. 代入 inv1=h1+x, inv2=h2+yinv_1=h_1+x,\ inv_2=h_2+y,得到: A+Bx+Cy+Dxy0(modp)A+Bx+Cy+Dxy\equiv0\pmod p
  4. z=xyz=xy,化成线性: Bx+Cy+DzA(modp)Bx+Cy+Dz\equiv -A\pmod p
  5. 用格(LLL + Babai)求出小解 (x,y,z)(x,y,z),再验证 z=xyz=xy
  6. 还原完整逆元: inv1=h1+xinv_1=h_1+x
  7. 还原消息: sinv11t1(modp)s \equiv inv_1^{-1}-t_1\pmod p
  8. long_to_bytes(s) 得到 flag。

给你一份可直接跑的 Python 解法(核心思路就是上面)

你这组数据我实际跑出来的 flag 是:

flag{H1de_S1cr1t_IsS0_Ezf01r_y0u}

下面代码包含:

  • 计算 A,B,C,DA,B,C,D
  • LLL 约化(我用了一个“纯 Python/分数”的简化 LLL)
  • Babai 最近平面
  • 还原 flag

你如果用 SageMath,会更短(matrix(ZZ, ...).LLL()),但我先给你“纯 Python 版”思路更清晰。

python
from Crypto.Util.number import inverse, long_to_bytes from fractions import Fraction p = 167264670864949699243357401113153413519395292842449702828997572587750744834109623044157691349874788443790813991233493187794208993416335499200258467667251878377809772494422224799463216535077998226807333354887520008430717730163942897177961332163562331189299169807359374076510657092682573089393224676206465299481 t1 = 54205988582886778833457799475098659028926887812765603455747115607215401361621742985106290116194861063767444600441258507426158129383071764259602929436444817489805442555547918972855579813914210680247478024861432102196251008812915761410423068240889240928469255876570421762674154189999999792058567237621394396271 h1 = 2546698704243987536016492442967166113447850717026761327623738213470629383370759333483184881495588176808273661168597885481456942923393620297008613216304247190570943812048945341256947796531532546196494257883630230367512634958046836640727905189456714715052293584431397022936421091296508421575965932945498177536 t2 = 4343825245377051766505786024070186727131854242224107955057658697141719731502298050775438124008054391043556285558776400249635735928087246121689525142171481609750710988915493632267888553552842244530750198651613701139984013488023194742902848230076510741997604547571596886981566463754331330080252181562481666127 h2 = 2802720220541111900541354867712021493670777147149794113335529387112961462634010734123202153568969265423470761636550474743567712207627701527848956111416129699136305492622854346336413265233450906832479683876769460583246976169424803168278765255846550373688672750611910856303146814284162789519551077992712110080 # ---------- 1) 组出 A,B,C,D 使得 A + Bx + Cy + Dxy == 0 (mod p) ---------- delta = (t2 - t1) % p A = (h1 - h2 - delta*h1*h2) % p B = (1 - delta*h2) % p C = (-1 - delta*h1) % p D = (-delta) % p # 线性化:Bx + Cy + Dz == -A (mod p), 其中 z = x*y b = (-A) % p # ---------- 2) 简化 LLL + Babai(最近平面) ---------- def nearest_int(frac: Fraction) -> int: num, den = frac.numerator, frac.denominator if num >= 0: return (2*num + den) // (2*den) else: return -((2*(-num) + den) // (2*den)) def gram_schmidt(basis): m = len(basis) n = len(basis[0]) b_star = [[Fraction(0) for _ in range(n)] for _ in range(m)] mu = [[Fraction(0) for _ in range(m)] for _ in range(m)] Bn = [Fraction(0) for _ in range(m)] for i in range(m): b_star[i] = [Fraction(x) for x in basis[i]] for j in range(i): dot = sum(Fraction(basis[i][k]) * b_star[j][k] for k in range(n)) mu[i][j] = dot / Bn[j] b_star[i] = [b_star[i][k] - mu[i][j]*b_star[j][k] for k in range(n)] Bn[i] = sum(b_star[i][k]*b_star[i][k] for k in range(n)) return mu, b_star, Bn def lll_reduce(basis, delta=Fraction(3,4)): basis = [list(map(int, row)) for row in basis] m = len(basis) n = len(basis[0]) mu, b_star, Bn = gram_schmidt(basis) k = 1 while k < m: # size reduction for j in range(k-1, -1, -1): r = nearest_int(mu[k][j]) if r != 0: basis[k] = [basis[k][i] - r*basis[j][i] for i in range(n)] mu, b_star, Bn = gram_schmidt(basis) # Lovasz if Bn[k] >= (delta - mu[k][k-1]**2) * Bn[k-1]: k += 1 else: basis[k], basis[k-1] = basis[k-1], basis[k] mu, b_star, Bn = gram_schmidt(basis) k = max(k-1, 1) return basis def babai_closest_vector(basis, target): mu, b_star, Bn = gram_schmidt(basis) t = [Fraction(x) for x in target] m = len(basis) n = len(basis[0]) coeffs = [0]*m for i in range(m-1, -1, -1): dot = sum(t[k]*b_star[i][k] for k in range(n)) c = dot / Bn[i] k_i = nearest_int(c) coeffs[i] = k_i t = [t[k] - k_i*basis[i][k] for k in range(n)] v = [0]*n for i in range(m): for k in range(n): v[k] += coeffs[i]*basis[i][k] return v # 这个格的行向量: (p,0,0,0), (B,1,0,0), (C,0,1,0), (D,0,0,1) basis = [ [p,0,0,0], [B,1,0,0], [C,0,1,0], [D,0,0,1], ] basis_red = lll_reduce(basis) v = babai_closest_vector(basis_red, [b,0,0,0]) # v 应该是 (b, x, y, z) assert v[0] == b x = v[1] y = v[2] z = v[3] assert x*y == z # ---------- 3) 还原 s ---------- inv1 = h1 + x s = (inverse(inv1, p) - t1) % p print(long_to_bytes(s))

你应该记住的“解题原理关键词”

  • 模逆元泄露高位 / 截断泄露(truncated bits)
  • 两条样本把同一个 secret ss 连起来
  • 把“逆”的关系消掉,得到双线性同余
  • 引入 z=xyz=xy 线性化
  • LLL 约化 + Babai 最近平面解决“小解的模线性方程” (en.wikipedia.org)

如果你愿意,我也可以把“为什么这一步能线性化、为什么格一定能找回小解”的条件(比如解的大小和模数位数之间的关系)再用更数学一点的方式推导一遍。

Câu hỏi

Bx+Cy+Dz≡−A(modp)一直到这一步我都懂了,你说接下来是小解的模线性方程问题,还有什么格方法我不知道是什么东西,解释一下。还有,按我的理解,p是309位十进制,然后x和y一共有2^256种组合,出现两个或更多解的可能性就是2^256/10^309,我的理解对不对,还是说只能有一个解呢。你加了一个未知数z,也是建立在2^512/10^309≈0的基础上的吧

Suy nghĩ

Describing lattice methods

Piecing together lattice methods, including modular linear equations and CVP. Evaluating uniqueness and probabilistic reasoning to identify correct solutions.

Analyzing embedding and scaling

I'm examining how scaling and embedding influence lattice methods. Scaling coordinates ensures uniform basis, aiding unique solution identification. LLL, CVP, and Kannan embeddings are central concepts in this analysis.

Analyzing probability trends

It's interesting to see that with constraints and high p, extra solutions are highly improbable, typically resulting in 0 or 1, even with additional variables like z.

Analyzing lattice strategies

I'm examining scaling and bounding to ensure coordinates stay roughly even. This leads me to conclude that the smallest solution often emerges from the closest lattice vector. Progress is steady.

Weighing Z's importance

Hm, that's interesting: scaling coordinates, especially Z, ensures its significance in CVP, potentially tightening the focus on minimal vectors and close matches to the target.

Figuring out bit length

I'm working through Python to get the exact bit length and decimal digits. This helps us understand data size and capacities, leading to more accurate analysis.

Analyzing lattice techniques

I’m exploring lattice methods to find solutions for equations in Z_p, including CVP, SVP, and Kannan embedding, focusing on their complexity and approximation strategies.

Refining lattice approximation

OK, let's refine lattice approximation by rounding coefficients using Babai algorithm, noting its effectiveness for cryptographic setups. Also, addressing scaling's importance in finding nearest lattice vectors.

Verifying conditions

I’m confirming the likelihood of unique solutions due to large p, setting bounds, and verifying constraints with additional equations to ensure plausibility.

Evaluating probability

I’m curious about the chance of 2^256 being divisible by a prime p. The probability is around 6.9e-232, which aligns closely with 2^-767.896.

Crafting the equation
I started by identifying the equation's transformation to a 4-dimensional lattice problem, focusing on finding the nearest lattice point to the target vector. The reduction to solving the closest vector problem (CVP) and using the LLL and Babai algorithms were key steps.

Embedding z=xy
I discussed integrating z=xy into the lattice, emphasizing the geometric guarantee of uniqueness, and comparing lattice methods. This involves examining the conceptual foundations through simpler examples.

Speculating about solution reach
I explored the likelihood of finding extra solutions by considering scaling and the LLL algorithm, while noting unique short vectors in the lattice could indicate more potential solutions.

Investigating lattice qualities
I examined the unique lattice and Babai method's ability to pinpoint the closest vector to the target, ensuring géometric precision and enhancing algorithm efficiency.

Clarifying the scope
I’m thinking through the rarity of multiple solutions and emphasizing the importance of verifying constraints like z=xy for resolving the equation effectively.

Enhancing search precision
Shifting to an 11-dimensional lattice, I'm noting that a larger dimension boosts resolution, making the nearest vector search more exact.

Verifying calculations

I'm checking the lattice method's reliance on random probability and its deterministic nature. Comparing the likelihood of the hidden vector's proximity to the target vector.

Reasoned for 20m 15s

Trả lời

你已经走到

Bx+Cy+Dzb(modp)(这里 bA(modp))Bx+Cy+Dz\equiv b\pmod p\qquad(\text{这里 }b\equiv -A\pmod p)

这一步非常关键:这就是典型的“模线性方程 + 小解”场景。接下来用到的“格方法”本质上是在做:

把“同余式”改写成“带未知倍数 kpkp 的整数等式”,然后把它编码成一个**格(lattice)**里的点;因为 x,y,zx,y,z 很小,这个点会是某个格问题(CVP/SVP)里的“短向量/最近点”,用 LLL + Babai 就能找回来。

下面按你现在这一步开始解释。


1) 为什么说它是“小解的模线性方程”问题?

同余式

Bx+Cy+Dzb(modp)Bx+Cy+Dz\equiv b\pmod p

等价于存在某个整数 kk,使得

Bx+Cy+Dz=b+kp.Bx+Cy+Dz = b + kp.

也就是

kp+Bx+Cy+Dz=b.kp + Bx + Cy + Dz = b.

这一步把“模 pp”消掉了,变成了整数线性关系,只是多了个未知的 kk

现在你有 4 个未知整数 (k,x,y,z)(k,x,y,z),并且你知道一个关键额外信息:

x<2128, y<2128, z<2256(小!)|x|<2^{128},\ |y|<2^{128},\ |z|<2^{256}\quad(\text{小!})

pp 是 1024-bit(你说的 309 位十进制没错)。

这就是“小解”:在所有满足等式的整数解里,我们要找的是那个 x,y,zx,y,z 很小的解。


2) 什么是“格(lattice)”?这里怎么构造?

可以理解成:在 Rn\mathbb{R}^n 里由一些“基向量”做整数线性组合得到的一堆离散点:

L={iuibi : uiZ}.L = \left\{\sum_{i} u_i \mathbf{b}_i\ :\ u_i\in\mathbb{Z}\right\}.

二维的直观例子:(1,0),(0,1)(1,0),(0,1) 的整数线性组合就是整点网格 Z2\mathbb{Z}^2


把你的等式编码成一个 4 维格

考虑 4 个向量(把它们看作“基向量”):

b1=(p,0,0,0)\mathbf{b}_1=(p,0,0,0) b2=(B,1,0,0)\mathbf{b}_2=(B,1,0,0) b3=(C,0,1,0)\mathbf{b}_3=(C,0,1,0) b4=(D,0,0,1)\mathbf{b}_4=(D,0,0,1)

那么任意整数 k,x,y,zk,x,y,z 的组合

kb1+xb2+yb3+zb4k\mathbf{b}_1 + x\mathbf{b}_2 + y\mathbf{b}_3 + z\mathbf{b}_4

就是

(kp+Bx+Cy+Dz, x, y, z).(kp + Bx + Cy + Dz,\ x,\ y,\ z).

所以我们定义这个格:

L={(kp+Bx+Cy+Dz, x, y, z) : k,x,y,zZ}.L=\{(kp + Bx + Cy + Dz,\ x,\ y,\ z)\ :\ k,x,y,z\in\mathbb{Z}\}.

现在如果 (x,y,z)(x,y,z) 满足 Bx+Cy+Dz=b+kpBx+Cy+Dz=b+kp,那么对应的格点正好是:

(b, x, y, z)L.(b,\ x,\ y,\ z)\in L.

也就是说:你的解 (x,y,z)(x,y,z) 被编码成了格里的一个点,而且这个点的第 1 个坐标固定是 bb,后 3 个坐标是我们要找的小数。

这就是“格方法”的核心转换。


3) CVP:为什么变成“找最近格点”?

令目标向量(不是格点)为:

t=(b,0,0,0).\mathbf{t}=(b,0,0,0).

如果我们能在格 LL 中找到点 (b,x,y,z)(b,x,y,z),那它和 t\mathbf{t} 的距离就是

(b,x,y,z)(b,0,0,0)=x2+y2+z2,\| (b,x,y,z)-(b,0,0,0)\|=\sqrt{x^2+y^2+z^2},

而这因为 x,y,zx,y,z 有界(很小),所以这个格点会是一个非常近的候选。

于是问题变成了经典的格问题:

  • Closest Vector Problem (CVP):给定一个格 LL 和目标点 t\mathbf{t},找离 t\mathbf{t} 最近的格点。(CSE UCSD)

在很多密码题里,这类“同余 + 小解”都会被包装成 CVP(或相关的 SVP 变体),然后用 LLL/Babai 做近似解。(Wikipedia)


4) LLL 是干什么的?

LLL(Lenstra–Lenstra–Lovász)基约化做的事可以一句话概括:

给你一个“很歪、很长”的格基,它把基变得“更短、更接近正交”,让你更容易在格里找短向量/最近点。(Wikipedia)

注意:LLL 不是直接“解方程”,它是一个预处理,把格的几何形状变得好用。

更形象一点:
原来的基可能像两根几乎平行的长杆(很难看出格点分布),LLL 会把它换成两根更短、夹角更大的杆(更像正交坐标),这时“找最近点”的舍入/投影策略才靠谱。(Wikipedia)


5) Babai 最近平面算法是干什么的?

LLL 之后通常配合 Babai’s Nearest Plane (Nearest Hyperplane) 算法来做 CVP 的近似求解:

从最后一维开始,把目标点投影到 Gram-Schmidt 正交化的方向上,然后逐维“取最近整数系数”,得到一个近似最近的格点。(CIMS)

直觉:像在二维格子上找离某点最近的整点:

  • 如果格子是正方形网格,直接对坐标四舍五入就行;
  • 如果格子被“剪切”成平行四边形网格,直接四舍五入会错;
  • LLL 让网格“更接近正方形”,Babai 就像“在这个更正的坐标系里做四舍五入”。(CIMS)

6) 那我们为什么能从 Babai 得到 精确(x,y,z)(x,y,z)

这依赖一个“经验上非常常见、在 CTF 中通常成立”的几何事实:

  • 在你构造的格里,确实存在格点 (b,x,y,z)(b,x,y,z)
  • 并且这个解对应的 (x,y,z)(x,y,z) 足够小,使得它在目标 (b,0,0,0)(b,0,0,0) 附近“非常突出”;
  • LLL 让基更好,Babai 的近似就会命中这个突出点。

最后还会做一个验证:你本来就要求 z=xyz=xy,所以即使线性化后得到了某个 (x,y,z)(x,y,z),也要检查 z=?xyz\stackrel{?}=xy。这一步把“可能的伪解”几乎都排掉。


7) 你关于“解的唯一性/概率”的理解对吗?

(a) 你的 p 位数判断对:p 是 309 位十进制,1024 bit

是的,这个 pp 的十进制长度是 309 位,对应 bit 长度 1024(你可以用 p.bit_length() 验证)。因此 p21024p\approx 2^{1024}


(b) 对原始的 (x,y)(x,y) 方程:为什么几乎只有一个小解?

原始(带 xyxy 的)同余你可以看成:在 N=2256N=2^{256} 个候选 (x,y)(x,y) 里找满足条件的。

如果把“对不同 (x,y)(x,y) 是否满足同余”当成近似随机事件(CTF 里常用的启发式),那么:

  • 每个 (x,y)(x,y) 成为解的概率约 1/p21024\approx 1/p \approx 2^{-1024}
  • 期望解数 N/p=2256/21024=276810231\approx N/p = 2^{256}/2^{1024}=2^{-768}\approx 10^{-231}

这意味着:如果 (A,B,C,D)(A,B,C,D) 真的是随机的,在这么小的范围里大概率根本没有解。

但你的题不是“随机出题”,而是“先种下(planted)一个真解”:
题目数据是由真实 secret ss 生成的,所以保证至少有一个真解 (x0,y0)(x_0,y_0)

那么你关心的是“会不会还有第二个小解?”
对“额外解”的启发式估计是:

Pr( 第二个小解)N1p2768,\Pr(\exists\ \text{第二个小解}) \approx \frac{N-1}{p} \approx 2^{-768},

基本可以认为是 0。

所以结论是:几乎肯定只有一个小解(那个被种下的)。
你用“搜索空间大小 / 模数大小”来估计唯一性,这个方向是对的,只是要注意“本题是种了一个必然存在的解”。


(c) 引入 zz 以后,你说的 2512/1030902^{512}/10^{309}\approx 0 有哪些细节?

你把范围当作:

  • xx21282^{128}
  • yy21282^{128}
  • zz22562^{256}
    总共 25122^{512} 个三元组

然后拿 2512/p2512101542^{512}/p \approx 2^{-512}\approx 10^{-154} 来说“几乎不会撞出两个解”。这个数量级判断同样是在估计唯一性,方向没错。

但要补两个关键点:

  1. 线性同余 Bx+Cy+Dzb(modp)Bx+Cy+Dz\equiv b\pmod p 在模 pp 意义下解非常多
    因为它是 3 个变量 1 条线性约束:在 (Z/pZ)3(\mathbb{Z}/p\mathbb{Z})^3 里,它是一张“平面”,有大约 p2p^2 个模解(比如随便选 x,yx,y,就能解出唯一的 zz)。
    因此“解多不多”不是问题,问题是:在你这个小盒子 [0,2128)×[0,2128)×[0,2256)[0,2^{128})\times[0,2^{128})\times[0,2^{256}) 里,能不能有解、会不会不止一个

  2. 你加 zz 并不是“为了让概率更小”,而是为了把 非线性项 DxyDxy 变成线性项 DzDz
    也就是说,引入 zz 的目的主要是“线性化以便用格”,不是主要建立在概率估计上。

然后再用 z=xyz=xy 这个验证条件,把线性化带来的伪解排除。


8) 把这一段和你的题完全对应起来(你可以对照理解)

在你这题里,最后确实能用 LLL + Babai 找到唯一的小解,并且满足 z=xyz=xy。我实际算到的那组是:

  • x=204797914155582675798458399559613710204x = 204797914155582675798458399559613710204(128 bit)
  • y=28624777682690119271227122081061734915y = 28624777682690119271227122081061734915(125 bit)
  • z=xyz = xy

然后 inv1=h1+xinv_1 = h_1 + x,再反推出 ss 进而得到 flag。


如果你想继续深入一点,我建议你下一步把注意力放在这句话上:

“我们为什么能相信 (b,x,y,z)(b,x,y,z) 会是目标 (b,0,0,0)(b,0,0,0) 的最近格点/足够近的格点?”

这涉及到两件事:

  • **如何给坐标做缩放(scaling)**让“短”更符合我们的界限(很多题要显式乘上 21282^{128}22562^{256} 做权重);
  • 以及 LLL+Babai 在低维时为什么常常能直接命中。

你要是愿意,我可以用一个 2 维小玩具例子(比如 axb(modp)ax\equiv b\pmod pxx 很小)画出“格点/最近点”的直觉,再回到你这个 4 维例子,就会非常顺。

Chia sẻ Q&A này