how to Calculate (1╱sin250°+√3╱cos290°)

Tạo vào: 8 tháng 2, 2025

Trả lời bằng O1 bởi Chat01

Câu hỏi

how to Calculate (1╱sin250°+√3╱cos290°)

Suy nghĩ

计算角度三角函数

计算角度三角函数

计算角度三角函数

可能是4的原因分析

探讨角度和函数

用三角恒等式表示一维向量

使用R值解三角方程

已推理,持续 22 秒

Trả lời

Solution Explanation

We want to evaluate the expression

E  =  1sin(250)  +  3cos(290).E \;=\; \frac{1}{\sin(250^\circ)} \;+\; \frac{\sqrt{3}}{\cos(290^\circ)}.

1. Rewrite the angles in more familiar forms

  1. sin(250)\sin(250^\circ)
    Notice 250=180+70250^\circ = 180^\circ + 70^\circ.
    We use the identity sin(180+θ)=sin(θ)\sin(180^\circ + \theta) = -\sin(\theta).
    Hence,

    sin(250)=sin(180+70)=sin(70).\sin(250^\circ) = \sin(180^\circ + 70^\circ) = -\sin(70^\circ).
  2. cos(290)\cos(290^\circ)
    Notice 290=36070290^\circ = 360^\circ - 70^\circ.
    We use the identity cos(360θ)=cos(θ)\cos(360^\circ - \theta) = \cos(\theta).
    Hence,

    cos(290)=cos(36070)=cos(70).\cos(290^\circ) = \cos(360^\circ - 70^\circ) = \cos(70^\circ).

Therefore, the expression becomes

E=1sin(70)  +  3cos(70)=1sin(70)  +  3cos(70).E = \frac{1}{-\,\sin(70^\circ)} \;+\; \frac{\sqrt{3}}{\cos(70^\circ)} = -\,\frac{1}{\sin(70^\circ)} \;+\; \frac{\sqrt{3}}{\cos(70^\circ)}.

2. Convert sin(70)\sin(70^\circ) and cos(70)\cos(70^\circ)

Using the co-function identities:

sin(70)=cos(20),cos(70)=sin(20).\sin(70^\circ) = \cos(20^\circ), \quad \cos(70^\circ) = \sin(20^\circ).

So we can also write

E=1cos(20)  +  3sin(20).E = -\,\frac{1}{\cos(20^\circ)} \;+\; \frac{\sqrt{3}}{\sin(20^\circ)}.

3. Combine into a single fraction

Let’s put everything under one denominator:

E=sin(20)+3cos(20)sin(20)cos(20).E = \frac{-\,\sin(20^\circ) + \sqrt{3}\,\cos(20^\circ)}{\sin(20^\circ)\,\cos(20^\circ)}.

3.1 Simplify the numerator

Observe the numerator:

sin(20)+3cos(20).-\,\sin(20^\circ) + \sqrt{3}\,\cos(20^\circ).

A useful identity is that for some RR and α\alpha:

3cos(20)sin(20)  =  Rcos(20+α).\sqrt{3}\,\cos(20^\circ) - \sin(20^\circ) \;=\; R \cos\bigl(20^\circ + \alpha\bigr).

By matching coefficients, one can show that R=2R = 2 and α=30\alpha = 30^\circ, giving

3cos(20)sin(20)  =  2cos(50).\sqrt{3}\,\cos(20^\circ) - \sin(20^\circ) \;=\; 2\,\cos(50^\circ).

Hence, the numerator is:

sin(20)+3cos(20)=3cos(20)sin(20)=2cos(50).-\,\sin(20^\circ) + \sqrt{3}\,\cos(20^\circ) = \sqrt{3}\,\cos(20^\circ) - \sin(20^\circ) = 2\,\cos(50^\circ).

3.2 Simplify the denominator

The denominator is sin(20)cos(20)\sin(20^\circ)\,\cos(20^\circ). Recall the identity

sin(2θ)=2sin(θ)cos(θ).\sin(2\theta) = 2\,\sin(\theta)\cos(\theta).

So

sin(20)cos(20)=12sin(40).\sin(20^\circ)\cos(20^\circ) = \tfrac{1}{2}\,\sin(40^\circ).

4. Put it all together

Thus,

E=2cos(50)sin(20)cos(20)=2cos(50)12sin(40)=2cos(50)1×2sin(40)=4cos(50)sin(40).E = \frac{2\,\cos(50^\circ)}{\sin(20^\circ)\,\cos(20^\circ)} = \frac{2\,\cos(50^\circ)}{\tfrac12\,\sin(40^\circ)} = \frac{2\,\cos(50^\circ)}{1}\,\times \frac{2}{\sin(40^\circ)} = 4\,\frac{\cos(50^\circ)}{\sin(40^\circ)}.

But notice cos(50)=sin(40)\cos(50^\circ) = \sin(40^\circ) because cos(50)=sin(9050)=sin(40)\cos(50^\circ) = \sin(90^\circ - 50^\circ) = \sin(40^\circ).

Hence,

E=4×sin(40)sin(40)=4.E = 4 \times \frac{\sin(40^\circ)}{\sin(40^\circ)} = 4.

5. Final result

4.\boxed{4}.

Therefore,

1sin(250)+3cos(290)=4.\frac{1}{\sin(250^\circ)} + \frac{\sqrt{3}}{\cos(290^\circ)} = 4.

Chia sẻ Q&A này