最小值计算

Tạo vào: 26 tháng 12, 2024

Trả lời bằng O1 bởi Chat01

Câu hỏi

设n属于N*,求|n-1949|+|n-1905|+...+|n-2023|的最小值

Suy nghĩ

Charting the years

I’m mapping the years from 1905 to 2023, pinpointing key milestones like 1949, 1919, 1933, 1965, 1981, 1997, 2013, and 2023. It’s intriguing to see a potential pattern emerging among these years.

Weighing options

I'm piecing together whether the years are odd, leap, prime, or crucial for Chinese leaders, with a step of 4 years from 1905 to 2023. Progressing through these ideas.

Assessing the median's role

Interestingly enough, the minimal sum of |n−1949| + |n−1905| + ... + |n−2023| is achieved at the median 1964. This suggests n should be 1964 for optimal results.

Refining the calculations

I’m concluding that the problem asks for the minimal sum of absolute differences for a range. The unclear part is specifying which years to include.

Determining the range

I'm working through the range from 1905 to 2023, totaling 119 terms. The minimal sum occurs when n is the median, 1964.

Summing up differences

Summing absolute differences from 1964 to each year from 1905 to 2023 results in a total of 3540. This approach showcases the accuracy of the calculations.

Reassessing the pattern

I'm considering steps and sequences from 1905 to 2023, like yearly intervals and specific years at fixed intervals, to identify a pattern or confirm calculations.

Verifying assumptions

I’m thinking n should be 1964, as it minimizes the sum of absolute differences with years from 1905 to 2023.

Evaluating year sequences

I’m weighing the years from 1905 to 2023, likely 3540, but checking if n must be a positive integer.

Thought for 11 seconds

Trả lời

要找到表达式 n1949+n1905++n2023|n - 1949| + |n - 1905| + \ldots + |n - 2023| 的最小值,我们需要明确“\ldots”部分所包含的年份。假设“\ldots”表示从1905年到2023年的所有整数年份(即1905, 1906, 1907, …, 2023),我们可以按照以下步骤求解:

  1. 确定年份的范围和数量

    • 起始年份:1905年
    • 结束年份:2023年
    • 总年份数:2023 - 1905 + 1 = 119年
  2. 求和的最小值对应的 nn

    • 当求和 k=19052023nk\sum_{k=1905}^{2023} |n - k| 最小时,nn 应该是这些年份的中位数。
    • 119个年份的中位数是第60个年份,即 1905+59=19641905 + 59 = 1964 年。
  3. 计算最小和

    • 对于 n=1964n = 1964
    • 从1905年到1964年,共60个年份,差值的和为 m=059m=59×602=1770\sum_{m=0}^{59} m = \frac{59 \times 60}{2} = 1770
    • 从1965年到2023年,共59个年份,差值的和为 m=159m=59×602=1770\sum_{m=1}^{59} m = \frac{59 \times 60}{2} = 1770
    • 因此,总和为 1770+1770=35401770 + 1770 = 3540

结论: 当 n=1964n = 1964 时,表达式 n1949+n1905++n2023|n - 1949| + |n - 1905| + \ldots + |n - 2023| 取得最小值 3540

最小值是 3540。

Chia sẻ Q&A này