Green's Theorem Line Integral

Tạo vào: 19 tháng 12, 2024

Trả lời bằng OpenAI 01 bởi OpenAI01

Câu hỏi

Problem 1: (10 points) Let \( P = x - y^3 - y \) and \( Q = x^3 + y^2 \). Find the line integral of \(\oint_C P \, dx + Q \, dy\) where \( C \) is the simple closed curve \( x^2 + y^2 = 1 \). The line integral is taken counter-clockwise.

Suy nghĩ

计算绿定理

济观问题时,采用绿定理将线积分转化为区域D内的双重积分。计算∂Q/∂x和∂P/∂y后,得到了3x^2 + 3y^2 + 1。

转换坐标系

将单位圆内的积分转为极坐标,积分表达式为3r^2 + 1,通过对r进行积分和对θ进行积分,得到了最终结果5/4。

思考 花的時間為 幾秒

Trả lời

To evaluate the line integral CPdx+Qdy\oint_C P \, dx + Q \, dy where P=xy3yP = x - y^3 - y and Q=x3+y2Q = x^3 + y^2, and CC is the unit circle x2+y2=1x^2 + y^2 = 1 traversed counter-clockwise, we can use Green's Theorem.

Green's Theorem states:

CPdx+Qdy=D(QxPy)dA\oint_C P \, dx + Q \, dy = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA

where DD is the region enclosed by CC.

  1. Compute the Partial Derivatives:

    Qx=x(x3+y2)=3x2\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}(x^3 + y^2) = 3x^2 Py=y(xy3y)=3y21\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}(x - y^3 - y) = -3y^2 - 1

    Thus,

    QxPy=3x2+3y2+1\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 3x^2 + 3y^2 + 1
  2. Set Up the Double Integral:

    The region DD is the unit disk x2+y21x^2 + y^2 \leq 1. Switching to polar coordinates where x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta, the integrand becomes:

    3x2+3y2+1=3r2+13x^2 + 3y^2 + 1 = 3r^2 + 1

    The area element dAdA in polar coordinates is rdrdθr \, dr \, d\theta.

    So, the integral becomes:

    D(3r2+1)rdrdθ=02π01(3r3+r)drdθ\iint_D (3r^2 + 1) \, r \, dr \, d\theta = \int_0^{2\pi} \int_0^1 (3r^3 + r) \, dr \, d\theta
  3. Evaluate the Integral:

    • Integrate with respect to rr:

      01(3r3+r)dr=[3r44+r22]01=34+12=54\int_0^1 (3r^3 + r) \, dr = \left[ \frac{3r^4}{4} + \frac{r^2}{2} \right]_0^1 = \frac{3}{4} + \frac{1}{2} = \frac{5}{4}
    • Integrate with respect to θ\theta:

      02π54dθ=54×2π=52π\int_0^{2\pi} \frac{5}{4} \, d\theta = \frac{5}{4} \times 2\pi = \frac{5}{2}\pi

Final Answer:

CPdx+Qdy=52π\oint_C P \, dx + Q \, dy = \frac{5}{2} \pi

Answer:
After simplifying, the integral is five-halves times π. Thus,

∮C P dx + Q dy = (5⁄2) π

Chia sẻ Q&A này