Mice and Mice maintenance WT (C57BL/6J) and Ldlr−...

創建於:2025年12月25日

使用 GPT-5.2 Pro 回答 Chat01

問題

Mice and Mice maintenance
WT (C57BL/6J) and Ldlr−/− (B6.129S7-Ldlrtm1Her) 6-8 week old female mice were purchased from Jackson Laboratory. Jak2VF MxCre mice were created and reported previously.12 Bone Marrow (BM) from poly I:C treated female WT (C57BL/6J) or Jak2VF MxCre mice were transplanted into irradiated (10.5 Gy for 8.4 minutes) WT or Ldlr−/− recipients. WT BM recipients were fed a chow diet, while Ldlr−/− recipients were fed a Western diet (WD) (Harlan Teklad, TD88137) for the indicated period of time. Mice were housed under a 12 hr light /dark cycle with ad libitum access to water and food. All protocols were approved by the Institution Animal Care and Use Committee of Columbia University.
Atherosclerosis Lesion Analysis and Metabolic profiling
The heart with the aortic root attached was embedded in paraffin and then serially sectioned. The sections were stained with hematoxylin and eosin or trichrome (sigma, HT15) for morphometric lesion analysis. Five sections per mouse was used for total lesional and necrotic core area quatification as previously described.13 All these in vivo studies including the ones described below such as immunofluorescence and immunohistochemistry staining were performed with a blinding protocol. Each animal was assigned an arbitrary number and the data was collected based on the assigned number while the genotype of the mouse and experimental conditions were unknown to the data collector. Total plasma cholesterol and HDLcholesterol were measured using kits from WAKO diagnostics, total plasma triglyceride was measured using kit from Thermo (TR22421).
Immunofluorescence Staining
Paraffin-embedded slides were deparaffinized with Histo-clear and then rehydrated in deceasing concentration of ethanol. Identification of macrophages, neutrophils in atherosclerotic lesions were performed by immunostaining using anti-mouse CD107b (Mac-3) (BD 553322, 1˖100), anti-mouse Ly6G (Biolegend 127601, 1:200), anti-myeloperoxidase (R&D BAF3667, 1:30) Lesional MerTK was incubated with biotin-labeled MerTK (R&D system, BAF591) and Mac-3. The sections were incubated with primary antibodies overnight at 4˚C overnight then incubated with secondary antibodies for 30 min. For antibody specificity in immunofluorescence staining, isotype matched normal IgG was used as the control for each assay. Iron staining and TUNEL staining were performed using a commercially available kit (Abcam ab83366) and (Roche 12156792910). Images were acquired by using Leica immunofluorescence microscope.
Immunohistochemistry
Paraformaldehyde-fixed and paraffin-embedded lesions were deparaffinized and rehydrated, then incubated with anti-Mac-3 antibody (BD 553322, 1˖100) or with anti-Ter119 antibody (eBioscience 14-5921-82, 2 1:200) at 4˚C overnight and with secondary anti-Rat IgG (VECTOR, MP-7405) for 30 min. The reaction was developed with diaminobenzidine (DAB) staining (VECTOR, SK-4100). For antibody specificity, isotype matched normal IgG was used as the control for each assay.
Flow Cytometry
Flow cytometry to quantify peripheral blood neutrophils, monocytes, platelet-neutrophil aggregates, platelet-monocyte aggregates or bone marrow hematopoietic stem and progenitor cells profiles were performed as previously described.13 For analysis of erythrocytes from mice and human samples, the red blood cells were labeled with antibody against Ter119 (eBioscience 14-5921-82) or CD47 (BD 556045 for human and BD 563585 for mice) or Calreticulin (Abcam ab22683) in staining buffer (30 min, 4°C). For neutrophils activity assays, neutrophils were stained with antibodies against to CD45 (Biolegend 103133),
CD11b (Biolegend 101211), Ly6G (BD 561104) in staining buffer (20 min, 4°C). Formyl-Nle-Leu-PheNle-Tyr-Lys (FMLP) conjugated with Fluorescein (Thermofisher, 10 min, 4°C) was used to detect FPR1 expression. Flow cytometry was performed using the LSR Fortessa or LSRII (Beckton Dickinson) and data were analyzed using FlowJo software (Beckton Dickinson). Isotype matched normal IgG was used as the control in each flow cytometry assay.

Intravital Microscopy
Leukocyte-endothelial interactions along the carotid artery were analyzed by intravital epifluorescence microscopy. Mice were placed in supine position, and the right jugular vein was cannulated with a catheter for antibody injection. Intravital microscopy was performed after injection of antibodies to Ly6G (1μg; clone 1A8; eBioscience), Ly6C (1μg, HK1.4, Biolegend), and CD11b (1μg, M1/70, eBioscience) using an Olympus BX51 microscope equipped with a Hamamatsu 9100-02 EMCCD camera, and a 10× salineimmersion objective. Movies of 30s were acquired and analyzed offline. Rolling flux was assessed as cell moving across a line perpendicular to the carotid artery. Cells were considered adherent if not moving
during 30 seconds.
Flow Adhesion Assays
Flow adhesion assays were performed in vitro using IBIDI-Slide IV 0.1 flow chambers (Ibidi). Flow chambers were coated with 12 μg/mL of intercellular adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1) and P-selectin (all from R&D systems). Neutrophils were stained with Ly6G (eBioscience 17-9668-82ˈ1:100) for 15 min on ice. After adding 1mM of Ca2+/Mg2+, 5x105 neutrophils were placed into flow chambers and flow was created during 3 minutes at 5μL/min at 37°C using a highprecision syringe pump. After perfusion with PFA 4%, cells were washed with PBS. Pictures were acquired using a climate chamber fluorescence microscope (Leica, DMi8) and adhered neutrophils were quantified using ImageJ software.
雷帕霉素/恩那度司他 atherosclerosis study
Chimeric Ldlr−/− mice with 20% Mx1-Jak2VF and 80% GFP bone marrow were administered WTD ENVIGO (TD.88137) supplemented with ruxolitinib (2 g/kg)35,36 for 12 weeks.

Bulk cell RNA-seq (做斑块/外周血的代谢、脂质组学等分析)
CD11b+ splenocytes were isolated from wild-type recipient mice 11 weeks after BMT. For hypercholesteraemia experiments, BMT was conducted in Ldlr−/− mice, four weeks after which a WTD was administered and sustained for seven weeks. Following WTD, mice were killed and CD11b+ splenocytes were collected and isolated into TRIzol reagent (Thermo Fisher Scientific). Aortic roots were also removed. RNA was isolated with RNeasy kits (Qiagen) and RNA-seq experiments were conducted as previously described37 on a NexSeq 500 (illumina). Genes were considered differentially expressed if they were significant at 5% false discovery rate (FDR) by DESeq2 and were at least twofold different in average reads per kilobase of transcript per million mapped reads (RPKM). Gene ontology analysis was conducted using the PANTHER database38. Extended Data Fig. 1 displays RNA-seq data. All data have been deposited into a public repository.
Aortic single-cell digest
Following termination of WTD, aortas were isolated, digested with 2.5 mg/ml liberase (Millipore Sigma, LIBTM-RO), 120 U/ml hyaluronidase (Millipore Sigma, H3506), and 160 U/ml DNase I (Millipore Sigma, DN25) for 45 min at 37 °C as previously described31. For qPCR analysis, cells were washed and stained with CD11b-APC, BV786-Ly6G, CD45.1-PE and CD45.2-BV421. Cells were sorted on a BD Influx sorter and isolated directly into TRIzol. qPCR analysis was conducted as described above.
Single-cell RNA-seq
For single-cell RNA-seq (scRNA-seq), after 12 weeks WTD, Ldlr−/− mice with control, Mx1-Jak2VF, or Mx1-Jak2VFGsdmd−/− bone marrow (not in a chimeric model) were killed, and aortas were digested as indicated above, except that necrosulfonamide (20 μM, Torcis) was supplemented in all media to prevent ex vivo necroptosis and gasdermin D oligomerization. Cell digests were sorted by flow cytometry for DAPI−CD45+ events, then run on Genomics scRNA-seq.
Western blot analysis(改为动脉粥样硬化斑块)
Lung tissue homogenate and macrophages were harvested, and proteins were extracted using RIPA buffer (Beyotime) containing protease inhibitors cocktail (Roche, Mannheim, Germany). To concentrate supernatants for western blot, 700 μL 100% methanol and 175 μL trichloromethane were added to 700 μL supernatant and vortexed for 30 s. Supernatants were then centrifuged at 13000 rpm for 5 min at 4°C. The supernatant liquid was removed, and added 700 μL 100% methanol, then centrifuged at 13000 rpm for 5 min at 4°C. Supernatants were discarded. And the remaining pellet was resuspended in 20 μL10% SDS, then added 4 μL 5×SDS -PAGE sample loading buffer (Beyotime) and boiled for 10 min at 95°C. The protein concentrations were measured with PierceTM Rapid Gold BCA Protein Assay Kit (Thermo Fisher Scientific, Grand Island, USA). Equal amounts of protein or all protein from supernatants were subjected to 8%-12% gradient polyacrylic amide gel under reducing conditions. Gels were transferred into polyvinylidene difluoride membranes (Millipore, USA), blocked with 5% fat-free milk or 5% albumin from bovine serum (BSA, Biofroxx, Germany) at room temperature for 1.5 h. The blots were reacted with the primary antibody at 4 °C overnight, followed by horseradish peroxidaseconjugated secondary antibody (1:1000; Cell Signaling Technology, USA), and detection by ChemiDoc XRS (Bio-Rad, USA). The intensities of the bands were quantified using the Image Lab Analyzer software (Bio-Rad). β-actin, α-tubulin, or GAPDH were used as a loading control. The antibodies used in the study are shown in Table 1.
Real-time PCR (用动脉粥样硬化小鼠模型)
Total RNA was isolated from macrophages and lungs using RNAiso (TaKaRa Clontech, Japan). Reverse transcription with approximately 1 μg of total RNA was carried out in a T100TM Thermal Cycler (Bio-Rad, USA) using PrimeScriptTM RT reagent Kit (TaKaRa Clontech). Targeted gene expressions were measured by quantitative real-time PCR analyses using SYBR® Premix Ex TaqTM II system (TaKaRa Clontech) on a Bio-Rad real-time PCR system (CFX96 TouchTM; Bio-Rad, USA). The qPCR program was initiated at 95 °C for 30 s; 40 cycles of 95 °C for 15 s, and 60 °C for 30 s. β-actin was used as an endogenous reference gene. The primers in Table 2 were purchased from Sangon Biotech (Shanghai, China). Gene expression abundance was calculated by the 2−ΔΔCt method.
Cytokine detection
IL-1β contents in the cell culture supernatant were measured after an additional 24 h of incubation using appropriate ELISA kits (Cat# TNF-α: 88-7324; IL-1β: 88-7013; Invitrogen, Thermo Fisher Scientific, USA).
我在做题为【Jak2V617f突变激活中性粒细胞mTOR–HIF-1α 通路,驱动脂质代谢重编程在动脉粥样硬化中的机制及干预研究】的研究,上述是我在文献中找到的实验方法描述(参数或细胞、通路等可能不一致),请根据主要内容及研究思路,写一份中文的研究方法,要求尽量详细,修正存在的错误,参考顶刊或国自然标书的实验设计方法,以及表达方式,保证逻辑的清晰,表达科学

思考

Mapping the strategy

I'm outlining the use of Jak2V617F conditional knock-in with Mx1-Cre, bone marrow transplantation, and rapamycin and enarodustat for mTOR-HIF-1α pathway intervention.

Pinpointing key areas

I'm mapping out interventions like rapamycin and enarodustat, and analyzing neutrophil-specific mTOR activation, metabolic reprogramming, and atherosclerosis lesion development using the latest methodologies.

Refining methodology

I’m correcting errors in dosage, cell type descriptions, and differentiating between pharmacological and genetic approaches for interventions. Ensuring accuracy and aligning parameters is essential.

Correcting drug discrepancies

I’m aligning the drug interventions with the research aim, ensuring consistency between rapamycin, enarodustat, and ruxolitinib. Proposing specific doses and methods to solidify the intervention strategy.

Enhancing robustness

I’m noting the use of female mice while proposing inclusion of both sexes for robustness. This emphasizes the significance of genetics and biological variables in atherosclerosis research.

Refining intervention strategy

I’m honing the intervention strategy by focusing on rapamycin, HIF-1α inhibitors, or enarodustat. Additionally, I’m incorporating rigorous statistical and quality control measures to ensure robust results.

Refining interventions

I’m refining interventions with rapamycin, HIF-1α inhibitors, or enarodustat. Ensuring consistency with JAK2 mutation and atherosclerosis studies, while optimizing mice per group for statistical power.

Refining methodologies

I’m noting the careful selection and testing of both pharmacological and genetic interventions to validate the mechanisms and treatment strategies for atherosclerosis, ensuring clarity and precision in research.

Refining detailed methods

I’m noting the precision in experimental procedures, emphasizing pharmacological and genetic interventions, and systematically mapping out the multistep process to ensure a thorough understanding of the research approach.

Reasoned for 9m 55s

回答

下面给出一份围绕“Jak2V617F突变激活中性粒细胞 mTOR–HIF‑1α 通路,驱动脂质代谢重编程并促进动脉粥样硬化”的中文研究方法(按顶刊/国自然标书常用写法组织)。内容在你提供文献方法基础上做了逻辑重排与关键错误修正(如 Jak2VF/MxCre 命名、WTD+药物段落不一致、10x scRNA‑seq表述、Tocris拼写等),并补充了与本课题“机制+干预+多组学验证”匹配的技术细节与质量控制(随机/盲法/排除标准等)。


一、研究总体设计与技术路线

1. 研究假设

JAK2V617F 突变导致中性粒细胞(neutrophil)内 mTOR 信号异常激活,继而促进 HIF‑1α 稳定与转录活化,驱动中性粒细胞发生脂质代谢重编程(脂肪酸摄取、胆固醇酯化/脂滴形成、脂氧化或合成途径再平衡),增强其黏附/浸润/效应功能,最终加重动脉粥样硬化斑块炎症与坏死核心形成。药物或遗传学阻断 mTOR–HIF‑1α 轴可减轻斑块负担并纠正代谢异常。

2. 总体实验分层

  • 模型层:建立 Jak2V617F 造血嵌合的 Ldlr^-/- 动脉粥样硬化模型(全量嵌合与 20%嵌合模拟 CHIP/克隆性造血)。
  • 机制层:从外周血/脾/骨髓/主动脉斑块分离中性粒细胞,系统评估 mTOR–HIF‑1α 激活、代谢重编程与功能表型(流式、免疫染色、转录组、代谢组/脂质组)。
  • 干预层:以 mTOR 抑制(如雷帕霉素)为主线,联合/对照 HIF 通路调控(如恩那度司他用于“下游HIF轴验证/救援”,或HIF‑1α抑制剂用于阻断验证),并可设置 JAK 抑制剂(如 ruxolitinib)作上游对照。
  • 结局层:斑块面积、坏死核心、胶原含量、炎症细胞浸润、血脂谱、炎症因子、中性粒细胞黏附与活体滚动/黏附参数、多组学特征。

二、实验动物与伦理

1. 动物来源与饲养

  • 野生型(WT)小鼠:C57BL/6J;动脉粥样硬化易感小鼠:Ldlr^-/-(B6.129S7‑Ldlr^tm1Her/J);6–8 周龄雌鼠(与既往研究一致,减少性别差异带来的变异;若后续扩展可加入雄鼠作独立验证队列)。
  • Jak2^V617F Mx1‑Cre 小鼠:建议采用标准命名 Mx1‑Cre; Jak2^V617F(或 Jak2^VF 简写),以免出现“Jak2VF MxCre”这类不规范表述(你提供文本中存在此类命名错误,应纠正)。
  • SPF 环境:12 h 光/暗循环,自由摄食饮水;温度 22±2°C、湿度 50±10%(可写入标书/论文)。
  • 伦理:所有动物实验经单位 IACUC 审批;所有取材与分析采用随机化与盲法。

2. 基因分型与质量控制

  • 断奶后 2–3 周进行 PCR 分型确认 Mx1‑Cre 与 Jak2^V617F 等位基因;
  • 实验开始前对供体/受体体重与健康状态筛查;严重感染、体重显著异常者排除。

三、Jak2V617F 造血嵌合模型构建(骨髓移植)

你提供文本“10.5 Gy for 8.4 minutes”属于设备相关曝光时间,不利于可重复性;顶刊/标书写法建议统一按**总剂量(Gy)**并注明是否分次照射。以下为规范写法。

1. Mx1‑Cre 诱导(供体小鼠)

  • 诱导剂:poly(I:C)(pI:pC)。
  • 给药方案建议写为:腹腔注射 pI:pC 10 mg/kg,每隔 48 h 1 次,共 3 次(或按实验室既往方案写明“每次 250 μg/只,隔日×3”,两者择一并保持全篇一致)。
  • 诱导后等待 2–4 周,使造血系统稳定表达 Jak2^V617F。

2. 受体小鼠致死照射与支持治疗

  • 受体:WT 或 Ldlr^-/- 小鼠。
  • 致死照射:总剂量 10.5 Gy,推荐分次照射(例如 2 次完成,间隔 3–4 h)以降低胃肠毒性;记录照射设备类型(X 射线或 γ 射线)和剂量率。
  • 照射后支持:移植后 2 周饮水加入抗生素(如恩诺沙星等)并进行体温/体重监测;体重下降 >20% 或严重衰竭者按伦理终止并记录为脱落。

3. 骨髓细胞制备与移植

  • 取材:供体股骨/胫骨冲洗骨髓,70 μm 滤网过滤,红细胞裂解,PBS/含2%FBS缓冲液重悬。
  • 移植细胞量:常用 5×10^6 个骨髓单核细胞/只(写明尾静脉或眶后静脉注射;以你们平台习惯为准)。
  • 嵌合模型设置
    • 全量嵌合:WT→Ldlr^-/-;Jak2^V617F→Ldlr^-/-。
    • 克隆性造血(CHIP)模拟:20% Jak2^V617F(Mx1‑Cre诱导后供体) + 80% 标记骨髓(GFP 或 CD45.1/2)混合移植至 Ldlr^-/-。混合比例按细胞数精确配比,总细胞数保持一致(例如总 5×10^6/只)。
  • 造血重建确认:移植后 4–6 周采集外周血,采用流式检测 GFP 或 CD45.1/CD45.2 比例评估嵌合效率;同时记录白细胞、血小板等血常规作为 Jak2V617F 表型参考。

四、动脉粥样硬化诱导与药物干预

1. 饮食诱导

  • Ldlr^-/- 受体:移植后造血重建稳定(通常 4 周)开始给予西方型饮食(Western‑type diet, WTD/WD;例如 TD.88137),持续 7–12 周(根据终点需要设定 7 周用于早期斑块、12 周用于成熟斑块/坏死核心形成)。
  • WT 受体对照:普通饲料(chow)。

2. 干预药物分组(建议写法)

为验证“mTOR→HIF‑1α→代谢重编程→粥样硬化”的因果链,建议至少设置:

  1. WT→Ldlr^-/- + WTD(基础对照)
  2. Jak2^V617F→Ldlr^-/- + WTD(突变组)
  3. Jak2^V617F→Ldlr^-/- + WTD + 雷帕霉素(mTOR抑制干预)
  4. Jak2^V617F→Ldlr^-/- + WTD + HIF通路调控
  • 若你研究目的为“阻断通路”:优先选 HIF‑1α 抑制策略(药物或遗传学)。
  • 若你想做“救援/验证下游”:可用 恩那度司他(Enarodustat,HIF‑PHD抑制剂)稳定HIF,用于检验“在mTOR被抑制时,HIF被重新激活能否部分恢复表型”,这是机制论文里常见的“救援实验”逻辑。

你提供文本中“雷帕霉素/恩那度司他 atherosclerosis study”但正文却写“ruxolitinib(2 g/kg)”,这是段落标题与内容不一致的错误。正确做法是:

  • 若该段确实做 JAK 抑制,应将标题改为“ruxolitinib 干预”;
  • 若该段要写雷帕霉素/恩那度司他,应把药物及剂量、给药途径写成对应的 rapamycin/enarodustat,并把 ruxolitinib 作为独立对照段落。

3. 给药方式与时间窗(标书式写法)

  • 给药起点:
    • 预防性干预:与 WTD 同时开始(验证通路对斑块形成的贡献)。
    • 治疗性干预:WTD 4–6 周后开始(验证对既有斑块进展/坏死核心的影响)。
  • 给药方式:优先采用饲料混合或灌胃确保长期稳定暴露;雷帕霉素可腹腔注射或饲料给药(按你们动物房与药理平台条件选择)。
  • 剂量:写成“依据既往文献与预实验确定有效且耐受剂量范围”,同时在方案里给出计划剂量区间与毒性监测指标(体重、肝肾功能、血细胞计数)。

    (这里不强行给“唯一固定剂量”,避免与实际药代/平台不符;顶刊论文通常也会在补充材料写清楚最终采用剂量。)


五、样本采集与代谢/血脂表型测定

1. 取材流程

  • 终点前禁食 4–6 h(根据实验室标准化方案选择是否禁食并保持一致)。
  • 麻醉后心脏穿刺采血(EDTA 抗凝用于流式,肝素或血清用于生化/组学)。
  • 体循环灌流:先 PBS 灌流去血细胞,再按需要用 4% 多聚甲醛灌注固定(用于组织学)或不固定(用于脂质组/代谢组)。

2. 血脂与代谢指标

  • 总胆固醇(TC)、HDL‑C、甘油三酯(TG)采用商业化试剂盒检测;必要时用 FPLC/超速离心评估脂蛋白分布。
  • 炎症因子(IL‑1β、TNF‑α、IL‑6、CXCL1/2 等)用 ELISA/多因子检测平台。
  • 血常规:白细胞分类、中性粒细胞计数、血小板计数(Jak2V617F相关表型的重要协变量)。

六、动脉粥样硬化斑块定量分析

为兼顾“形态学+成分+坏死核心+脂质沉积”,建议主动脉根部切片为主,辅以全主动脉铺片(en face)

1. 主动脉根部组织学

  • 取心脏连同主动脉根部,固定后石蜡包埋(H&E、Masson/天狼猩红等)。
  • 连续切片:厚度 5 μm;以主动脉瓣出现为起点,每间隔 50–80 μm 取 1 张,建议每鼠分析 6–10 张代表性切片(比“仅5张”更稳健,且符合多数顶刊常见做法)。
  • 染色与定量:
    • H&E:总斑块面积、坏死核心面积(定义为无核/无细胞结构区域)。
    • Masson 三色或天狼猩红:胶原含量与纤维帽结构。
    • 如需脂质沉积:建议另取冻切片行 Oil Red O(石蜡切片不适合脂滴保留)。

2. 全主动脉铺片(可选但推荐)

  • 从主动脉弓至髂动脉分叉取全段,纵向剪开铺展,Oil Red O 染色;
  • 定量斑块面积占比(% lesion area/total area)。

3. 随机化与盲法

  • 每只动物赋予编码,组织切片、拍照、ImageJ 定量全程盲法;
  • 结果解盲前不接触分组信息。

七、免疫荧光与免疫组织化学(斑块细胞组成与关键通路定位)

1. 石蜡切片免疫荧光(IF)

  • 脱蜡复水后进行抗原修复(柠檬酸缓冲液 pH6.0 或 EDTA pH9.0,按抗体说明优化)。
  • 封闭:5% BSA/同种血清,室温 1 h。
  • 一抗(4°C 过夜):
    • 巨噬细胞:Mac‑3(CD107b)
    • 中性粒细胞:Ly6G、MPO
    • 关键通路:p‑S6(mTOR 活化读出)、HIF‑1α(建议同时做核定位)
    • 凋亡/坏死:TUNEL
    • 铁沉积:普鲁士蓝染色(Prussian blue)
    • 凋亡细胞清除轴:MerTK(注意你提供文本“biotin‑labeled MerTK”更规范应表述为“生物素化抗MerTK抗体/探针”,并写明检测体系如链霉亲和素‑荧光二抗)。
  • 二抗孵育 30–60 min,DAPI 复染,荧光显微镜/共聚焦采集;同批次加入同型对照或 FMO/缺一抗对照验证特异性。

2. 免疫组化(IHC)

  • DAB 显色:Mac‑3、Ly6G、Ter119(用于检测斑块内红细胞相关信号/出血),并以苏木素复染。
  • 量化:阳性面积占比或阳性细胞数/单位斑块面积。

八、主动脉单细胞消化与细胞分选(斑块免疫细胞获取)

1. 主动脉消化

  • 终止 WTD 后取主动脉(尽量剥离周围脂肪组织),剪碎后加入酶消化体系:
    • Liberase(如 2–2.5 mg/mL)
    • 透明质酸酶(如 100–120 U/mL)
    • DNase I(如 100–160 U/mL)
  • 37°C 振荡消化约 45 min,期间轻柔吹打促进释放细胞;消化后 70 μm 过滤,PBS/2%FBS 洗涤。

2. 流式分选用于下游 qPCR/组学

  • 活细胞染色:DAPI^- 或活性染料阴性;
  • 免疫分群:CD45^+(免疫细胞),进一步分选 Ly6G^+CD11b^+ 中性粒细胞;
  • 若采用供受体标记(CD45.1/2 或 GFP):用于区分突变克隆来源细胞;
  • 分选后直接加入 TRIzol 或 RNA 裂解液,低温保存。

九、流式细胞术:中性粒细胞表型、mTOR–HIF‑1α 激活与脂质代谢读出

1. 样本与基本门控

  • 外周血、骨髓、脾、主动脉消化液均可用于流式。
  • 门控顺序建议:FSC/SSC → 单细胞 → 活细胞 → CD45^+ → CD11b^+Ly6G^+(中性粒细胞)。
  • 同时分析单核细胞(CD11b^+Ly6C^hi/lo)与血小板聚集物(CD41/CD42b 标记)作为炎症/血栓相关表型。

2. 通路活化与代谢表型

  • mTOR 活化:胞内染色检测 p‑S6(Ser235/236)或 p‑4EBP1;采用甲醇或专用固定透膜试剂,严格按抗体推荐流程。
  • HIF‑1α:胞内/核内染色或结合 WB/qPCR(Hif1a 及其靶基因)联合验证。
  • 脂质代谢读出(推荐加入,契合课题题目)
    • 脂滴:BODIPY 493/503 染色定量脂滴负荷;
    • 脂肪酸摄取:BODIPY‑C16 或荧光标记脂肪酸;
    • 胆固醇摄取/积累:NBD‑cholesterol 或 filipin(成像为主)。
  • 受体/功能相关:FPR1 可用荧光标记 fMLP 类配体结合检测;同时评估 CD11b 表达、脱颗粒标志(如 CD63/CD66b 类似指标在鼠需匹配抗体)。

3. 控制与重复

  • 每次实验包含同型对照、FMO 控制、补偿珠;
  • FlowJo/同等软件统一门控模板,确保跨批次可比性。

十、中性粒细胞功能实验(与斑块形成直接相关)

你提供的方法包含黏附、活体滚动/黏附等,非常契合“中性粒细胞促粥样硬化”的机制链。建议在本课题中把功能实验与 mTOR–HIF‑1α/代谢读出联动分析。

1. 中性粒细胞分离

  • 外周血/骨髓来源中性粒细胞可采用密度梯度(Percoll)或免疫磁珠阴性选择;
  • 纯度与活性:流式确认 Ly6G^+CD11b^+比例(>90%),台盼蓝或活性染料检测存活率(>95%)。

2. ROS、NETs 与趋化(建议加入)

  • ROS:DHR123 或 luminol 化学发光;
  • NETs:Sytox Green 动态检测 + CitH3/MPO‑DNA 免疫染色验证;
  • 趋化:Transwell(CXCL1/CXCL2)计数迁移细胞;
  • 干预验证:在体外加入雷帕霉素或 HIF 调控药物,观察功能与代谢表型是否同步改变。

十一、活体显微镜(Intravital microscopy):白细胞‑内皮相互作用

  • 麻醉后仰卧固定,维持体温 37°C;
  • 颈静脉置管用于注射荧光抗体;
  • 注射抗体:Ly6G、Ly6C、CD11b 等(写明克隆号与剂量范围,按平台经验优化);
  • 采用倒置/正置荧光显微镜与高灵敏相机采集 30 s 视频;
  • 指标定义(与你提供文本一致、写法更规范):
    • 滚动通量(rolling flux):单位时间内穿过垂直于血管轴线的细胞数;
    • 黏附细胞(adherent cells):连续 30 s 不移动的细胞数;
  • 离线分析:由盲法编码视频进行计数。

十二、体外流动黏附实验(Flow adhesion assay)

  • 采用 Ibidi μ‑Slide(如 IV 0.1 或 VI 0.1)建立剪切流系统;
  • 包被:ICAM‑1、VCAM‑1、P‑selectin(建议分别或联合包被,浓度 10–12 μg/mL,4°C 过夜),BSA 封闭;
  • 中性粒细胞预染:Ly6G(或荧光示踪染料);加入 Ca^2+/Mg^2+ 维持黏附分子功能;
  • 设定流速与剪切力:写明泵速(如 5 μL/min)并建议同时报告换算剪切应力(dyn/cm²),增强可重复性;
  • 流动 3 min,PFA 固定,PBS 冲洗;
  • 图像采集:随机视野(至少 5–10 个/通道),ImageJ 计数黏附细胞数;
  • 与通路联动:加入雷帕霉素/恩那度司他或 HIF‑1α 抑制策略,检测黏附是否可逆转。

十三、转录组测序(Bulk RNA‑seq):中性粒细胞/髓系细胞代谢重编程谱系

1. 样本选择与RNA提取

  • 推荐样本:外周血或主动脉来源 Ly6G^+CD11b^+ 中性粒细胞(最贴合课题);你提供文本为 CD11b^+ 脾细胞,也可作为补充髓系总体信号。
  • 分选后 TRIzol 裂解,RNeasy 柱纯化;RNA 质量 RIN>7。

2. 建库与测序

  • Illumina 平台(如 NextSeq/NovaSeq),双端测序;写明读长与测序深度(标书可写“每样本≥20M reads”,最终以预算与数据质量为准)。

3. 生信分析

  • 差异基因:DESeq2;阈值建议写为 FDR<0.05 且 |log2FC|≥1(比“至少两倍差异”更标准化);
  • 富集分析:GO/KEGG/Reactome;可使用 PANTHER 作为补充;
  • 重点通路:mTOR 信号、HIF‑1α 靶基因集、脂肪酸代谢/胆固醇代谢、糖酵解‑氧化磷酸化平衡;
  • 数据共享:原始数据上传 GEO/ArrayExpress(写入“数据将存入公共数据库”)。

十四、单细胞转录组(scRNA‑seq):斑块免疫微环境中性粒细胞异质性与通路定位

你提供文本“run on Genomics scRNA‑seq”表述不规范,建议改为10x Genomics Chromium
“Torcis”应为 Tocris

1. 样本制备

  • 12 周 WTD 后取主动脉,按“主动脉单细胞消化”获得细胞悬液;
  • 为减少离体诱导死亡与假信号,可在消化/染色缓冲液加入抑制剂(如 necrosulfonamide 20 μM,Tocris)并全程低温快速操作(该策略写成“用于降低离体应激导致的细胞死亡与假性转录激活”更符合顶刊风格)。

2. 分选与上机

  • 预分选:DAPI^-CD45^+ 活免疫细胞;
  • 上机:10x Genomics Chromium 建库;测序后 Cell Ranger 处理。

3. 数据分析

  • Seurat/Scanpy:质控(线粒体比例、UMI、基因数)、去双ts(DoubletFinder 等)、整合批次;
  • 注释中性粒细胞亚群:成熟/炎症型/干扰素响应型等;
  • 通路打分:mTOR、HIF‑1α、脂质代谢基因集 score;并与斑块指标(坏死核心/中性粒细胞浸润)关联。

十五、代谢组学与脂质组学(外周血与斑块/中性粒细胞)

你在括号中提出“做斑块/外周血的代谢、脂质组学等分析”,这是本课题的关键亮点,建议写成“样本‑平台‑质控‑统计”的完整链条。

1. 样本类型

  • 血浆:评估系统性脂质谱改变;
  • 分选中性粒细胞:评估细胞内脂质代谢重编程;
  • 主动脉根部/斑块:评估局部脂质堆积与代谢微环境。

2. 脂质组学(LC‑MS/MS)

  • 提取:采用 MTBE 或甲醇/氯仿体系,加入内标(覆盖 TG、CE、PC、PE、SM、Cer 等类群);
  • 上机:高分辨质谱(如 Orbitrap/Q‑TOF);
  • 数据处理:LipidSearch/Compound Discoverer/MZmine;以内标与样本量(细胞数/蛋白量)归一化;
  • 统计:多重比较校正(FDR),PLS‑DA/火山图/通路富集。

3. 代谢组学(糖酵解‑TCA‑脂氧化关键代谢物)

  • 提取:甲醇/乙腈/水快速淬灭;
  • 指标:乳酸、丙酮酸、柠檬酸循环中间体、酰基肉碱谱、游离脂肪酸等;
  • 可选验证:稳定同位素示踪(^13C‑葡萄糖或 ^13C‑棕榈酸)用于证明“通量改变”而非仅丰度改变(标书写“择优开展”即可)。

十六、蛋白与基因表达验证:Western blot 与 qPCR

你提供文本 WB/qPCR 以“肺组织与巨噬细胞”为主,与你课题的“动脉粥样硬化斑块/中性粒细胞”不匹配,应修正为以下样本来源。

1. Western blot(建议以中性粒细胞为主,斑块为辅)

  • 样本:分选 Ly6G^+ 中性粒细胞;或主动脉组织(必要时多只合并以满足蛋白量)。
  • 裂解:RIPA + 蛋白酶/磷酸酶抑制剂;BCA 定量;
  • 电泳转膜:8–12% SDS‑PAGE;PVDF;
  • 关键蛋白(根据课题假设建议纳入):
    • mTOR通路:p‑mTOR、p‑S6、p‑4EBP1;
    • HIF轴:HIF‑1α;
    • 代谢相关:GLUT1/HK2/LDHA(HIF靶基因与糖代谢),以及脂质代谢相关蛋白(CD36、PLIN2、ACLY/ACC/FASN、CPT1A等可根据预实验与组学结果择优)。
  • 内参:β‑actin/α‑tubulin/GAPDH;
  • 定量:Image Lab 等软件;同批次曝光,避免饱和。

你提供文本中“trichloromethane”建议在中文写作中统一写为氯仿(chloroform),方法可保留“甲醇‑氯仿沉淀浓缩上清蛋白”用于分泌蛋白/上清分析。

2. qPCR

  • 样本:分选中性粒细胞或主动脉 CD45^+ 免疫细胞;
  • 反转录:1 μg RNA;
  • qPCR:SYBR 体系;程序 95°C 30 s,40 cycles(95°C 15 s,60°C 30 s);
  • 内参:β‑actin 或 Gapdh(全篇保持一致);
  • 分析:2^-ΔΔCt;
  • 目标基因建议围绕“通路+代谢”设计:Hif1a、Slc2a1、Hk2、Ldha、Vegfa(HIF靶),以及脂质代谢/转运相关基因(Cd36、Plin2、Srebf1、Fasn、Acaca、Cpt1a、Abca1 等,最终可根据组学结果收敛成核心panel)。

十七、炎症因子检测(ELISA/多因子)

  • 细胞培养上清或血浆中 IL‑1β、TNF‑α 等用 ELISA 套件检测;
  • 若聚焦中性粒细胞炎症轴,可同步测定 CXCL1/2、G‑CSF 等与粒细胞动员相关因子;
  • 采样与冻存:避免反复冻融;同批次检测减少批间差。

十八、随机化、盲法、样本量与统计学

1. 随机化与盲法

  • 造血重建后按体重、血常规、嵌合比例分层随机分组;
  • 斑块定量、流式门控、显微镜计数与组学分析均采用编码盲法;
  • 预先设定排除标准:BMT后嵌合失败(如 GFP/CD45标记远低于预期)、严重感染或非计划死亡。

2. 样本量(标书常用表述)

  • 基于既往粥样硬化模型的效应量与预实验估计,采用功效分析确定每组 n 值;考虑BMT死亡与脱落率,按 10–20% 预留。

3. 统计学

  • 正态分布数据:t 检验或单/双因素 ANOVA(含饮食、基因型、药物因素),事后多重比较;
  • 非正态:Mann–Whitney 或 Kruskal‑Wallis;
  • 组学:差异分析 FDR 校正;
  • 显著性:P<0.05 或 FDR<0.05。

你可以直接套用的“方法学摘要”(用于标书“研究方法”开头的精炼段落)

本研究以骨髓移植构建 Jak2^V617F 造血嵌合的 Ldlr^-/- 动脉粥样硬化模型(含 20%嵌合模拟 CHIP),通过西方型饮食诱导斑块形成。采用组织学定量(主动脉根部 H&E/Masson、必要时 en face)评价斑块面积、坏死核心与胶原含量;采用免疫荧光/免疫组化与流式细胞术解析斑块中性粒细胞浸润、mTOR–HIF‑1α 通路活化(p‑S6、HIF‑1α)及脂质代谢表型(脂滴/脂肪酸摄取等);结合活体显微镜与体外流动黏附实验评估中性粒细胞‑内皮相互作用。进一步对分选中性粒细胞及斑块免疫细胞开展 bulk RNA‑seq、10x scRNA‑seq、代谢组与脂质组学,系统刻画 Jak2^V617F 驱动的代谢重编程网络。最后以雷帕霉素(mTOR 抑制)及 HIF 通路调控(如恩那度司他救援验证或HIF‑1α抑制阻断验证)进行干预,明确 mTOR–HIF‑1α 轴在 Jak2^V617F 相关动脉粥样硬化中的因果作用与潜在治疗靶点。


如果你希望我把这份“研究方法”进一步升级成国自然标书格式(按“研究内容1/2/3:目的‑方案‑关键技术‑预期结果‑风险与替代方案”逐条展开),我也可以在不额外问你问题的情况下,直接基于你这个题目给出一版更像标书的结构化文本;同时也可以把**“雷帕霉素/恩那度司他/ruxolitinib”**三者在你课题中的逻辑定位写得更“因果链闭环”(抑制‑救援‑对照)。

分享這個問答