请问swap rate的动态如何推导,assume我基础不够扎实,请walk me through ...

創建於:2025年5月19日

使用 O3 回答 Chat01

問題

image.pngimage.png

请问swap rate的动态如何推导,assume我基础不够扎实,请walk me through the derivation

思考

Explaining swap rate dynamics

The user asks for help with deriving the dynamics of the swap rate, specifically for swaption pricing, under the Black model. The provided image includes two equations: the first describes the swap rate's stochastic process, and the second defines the term Σm,n(t)\Sigma_{m,n}(t). Essentially, the user wants a step-by-step derivation of the dynamics of the swap rate, which is under the risk-neutral measure. This involves going through the stochastic differential equations and understanding the components involved in the Black model.

Walking through swap rate dynamics

The user asks for a step-by-step derivation of the swap rate dynamics. The swap rate is tied to forward rates and, under the annuity measure, follows lognormal dynamics leading to the Black formula. I'll start by defining the swap rate itself, explaining the discount factor, and then moving through derived components like forward rates. Using the annuity measure, I’ll show that the swap rate's volatility is log-normal and driftless, eventually introducing the risk-neutral measure and the drift term to connect to the final equation. I’ll aim to keep it clear and break it into manageable steps!

Crafting swap rate explanation

The user is asking for a step-by-step explanation on deriving the dynamics of the swap rate using the Black model, relating it to swaption pricing. I'll start by introducing the swap rate formula and then explain each part, including the annuity measure, forward rates, and the necessary drift adjustments. The equation reverts to a lognormal process under the annuity measure, but I need to also outline how this transforms once we shift to a risk-neutral measure. I'll offer this explanation in Chinese primarily, since they used it in the query.

Thought for 1m 18s

回答

下面按“从 0 开始”的思路,把 ATM 掉期利率 Rm,n(t)R_{m,n}(t) 的随机微分方程一步一步推出来。为了方便阅读,我把关键结论都写在灰底框里,推导放在后面的小节里;如果哪一步想再深挖,可以随时告诉我。


1 先把对象写清楚

记号含义
Tm<Tm+1<<TnT_m<T_{m+1}<\dots<T_n固定腿付息(也就是浮动腿重设)的日期
ΔT~k=TkTk1\Delta \tilde T_k=T_k-T_{k-1}kk 个现金流的利息区间
折现因子 P(t,T)P(t,T)time-tt 价内、到期 TT 的零息债价格
年金因子 Am,n(t)=k=m+1nΔT~kP(t,Tk)A_{m,n}(t)=\sum_{k=m+1}^{n}\Delta\tilde T_k\,P(t,T_k)固定腿未来现金流的折现现值
掉期(固定)利率 $$
R_{m,n}(t)=\frac{P(t,T_m)-P(t,T_n)}{A_{m,n}(t)}
--- ## 2 选一个“对我最友好”的测度 - 若把 **年金因子 $A_{m,n}(t)$** 选作 numeraire,则对应的测度记为 $Q^{A}$。 - 在 $Q^{A}$ 下,$\frac{R_{m,n}(t)}{1}$ 本身就是 **鞅**(因为掉期现金流恰好被年金贴现掉)。

\frac{R_{m,n}(t)}{A_{m,n}(t)} ;\text{是一价差,}; \Longrightarrow; R_{m,n}(t)\ \text{在}\ Q^{A}\ \text{下 drift}=0

> **结论 ①(年金测度下)** > $$ > dR_{m,n}(t)=R_{m,n}(t)\,\gamma_{m,n}(t)\;dW^{A}_t . > $$ > 这里的 $\gamma_{m,n}(t)$ 是后面要写出的“有效波动率”,$W^{A}$ 是年金测度下的布朗运动。 --- ## 3 把波动率 $\gamma_{m,n}(t)$ 写出来 1. 每个零息债 $P(t,T_k)$ 的风险中性动力学先设为

\frac{dP(t,T_k)}{P(t,T_k)} = -r_t,dt-\sigma_k(t)\cdot dW_t .

2. 对固定腿每一段对应的 **前向利率** $L_k(t)$ 设

dL_k(t)=L_k(t),\Sigma(t,\Delta\tilde T_k),dW_t + \dots

3.用商的Ito^引理处理3. 用商的 Itô 引理处理

R_{m,n}(t)= \frac{P(t,T_m)-P(t,T_n)}{A_{m,n}(t)}

就会得到就会得到

\gamma_{m,n}(t) =\frac{1}{R_{m,n}(t)}\sum_{k=m+1}^{n}\alpha_k,\Sigma(t,\Delta\tilde T_k), \qquad \boxed{\alpha_k=\frac{\Delta\tilde T_k,P(t,T_k)}{\sum_{j=m+1}^{n}\Delta\tilde T_j,P(t,T_j)}} .

这说明 **$\alpha_k$** 正好是固定腿现金流在年金里的“折现权重”,权重之和为 1。 --- ## 4 回到风险-中性测度 $Q$ 从 $Q^{A}$ 切换到 $Q$(基准 numeraire 改为贴现账户 $B_t$)需用 Girsanov:

dW_t^{A}=dW_t-\lambda_{A\to Q}(t),dt .

对 $R_{m,n}$ 而言,这个漂移校正项正是

\Sigma_{m,n}(t)=\sum_{k=m+1}^{n}\alpha_k,\Sigma(t,\Delta\tilde T_k).

> **结论 ②(风险-中性测度下)** > $$ > \boxed{ > dR_{m,n}(t)=R_{m,n}(t)\,\gamma_{m,n}(t)\Bigl(dW_t-\Sigma_{m,n}(t)\,dt\Bigr) > } \tag{37} > $$ > 其中 > $$ > \boxed{\Sigma_{m,n}(t)=\sum_{k=m+1}^{n}\alpha_k\,\Sigma(t,\Delta\tilde T_k)} \tag{38} > $$ 这正是你截图里的式 (37)–(38)。 - **直观含义**: - 在“自己最合适”的年金测度里,掉期利率只剩“波动”没有漂移; - 换回风险中性世界后,多了一块 **$-\Sigma_{m,n}(t)dt$** 的漂移补偿项。 - **$\Sigma_{m,n}(t)$** 其实就是 **固定腿各前向利率波动率的加权平均**;权重就是对应现金流在年金中的比例 $\alpha_k$。 --- ## 5 回顾一下推导脉络 1. **写清定价对象**:用零息债把 $R_{m,n}(t)$ 表成“差/和”。 2. **选 numeraire**:让它的贴现值天然成鞅 &rarr; 选年金因子。 3. **计算 Itô 微分**:在这个测度下漂移 = 0,得到波动率表达式。 4. **测度变换**:Girsanov 加一个漂移,把结果带回风险-中性测度。 这一套思路几乎贯穿了利率衍生品 Black-type 模型(Caps/Floors、Swaptions、CMS 等)的“标准套路”。一旦理解了“**选一个让标的变鞅的 numeraire,然后再变回来**”,很多看似复杂的公式都会迎刃而解。 --- ### 进一步阅读/练习建议 - **Brigo & Mercurio – *Interest Rate Models – Theory and Practice*** 第 4-5 章完整推导了 Cap/Floor 和 Swaption 的 Black-type 公式。 - **F. Black – “The Pricing of Commodity Contracts” (1976)** 虽然讲的是大宗商品,但最早提出“forward = lognormal &rarr; Black 公式”的原版思路。 - 试着自己动手: 1. 把波动率假设成常数,验证 Black-76 的闭式价格; 2. 换成 Hull-White 或 LMM(Libor Market Model),看看 $\gamma_{m,n}(t)$ 怎么写。 如果某一步仍觉得跳得太快,或者想把公式拆得更细,随时告诉我!

問題

请重新输出一遍,刚刚格式不对

思考

Reformatting explanation

The user says the previous format was wrong, but they didn’t specify what exactly was off. Maybe the markdown didn’t display some parts, like the grey boxes, or the layout was too cluttered. I needed a clearer structure, using proper markdown, such as equation blocks with double-dollar symbols for formulas, and bullet points for clarity. Since the original was in Chinese, I’ll make sure to keep that as well. I’ll reformat

Thought for 8 seconds

回答

下面把掉期利率 Rm,n(t)R_{m,n}(t) 的随机微分方程 (SDE) 重新排版输出,一步一节,方便你复制/查看。整篇分 5 步:先定义对象 → 选好标尺(numeraire)→ 推 Itô 微分 → 测度切换 → 小结。若仍有排版问题,直接告诉我!


1. 记号与基本定义

记号含义
Tm<Tm+1<<TnT_m<T_{m+1}<\dots<T_n掉期重设/付息日期
ΔT~k=TkTk1\Delta\tilde T_k = T_k - T_{k-1}kk 个利息区间
P(t,T)P(t,T)time‑tt 零息债价(到期 TT
年金因子Am,n(t)=k=m+1nΔT~kP(t,Tk)A_{m,n}(t)=\displaystyle\sum_{k=m+1}^{n}\Delta\tilde T_k\,P(t,T_k)
ATM 掉期固定利率$$
R_{m,n}(t)=\frac{P(t,T_m)-P(t,T_n)}{A_{m,n}(t)}
--- ## 2. 选“最好用”的测度:年金测度 $Q^{A}$ 设 **年金因子 $A_{m,n}(t)$** 为 numeraire,则

\frac{R_{m,n}(t)}{A_{m,n}(t)}\quad\text{在 }Q^{A}\text{ 下为鞅};\Longrightarrow; \text{漂移}=0 .

> **年金测度下的 SDE** > $$ > dR_{m,n}(t)=R_{m,n}(t)\,\gamma_{m,n}(t)\,dW^{A}_t . > $$ --- ## 3. 计算波动率 $\gamma_{m,n}(t)$ 1. 每条零息债在风险中性测度 $Q$ 下设

\frac{dP(t,T_k)}{P(t,T_k)}=-r_t,dt-\sigma_k(t)\cdot dW_t .

2. 对每条 **前向利率** $L_k(t)$ 写

dL_k(t)=L_k(t),\Sigma!\bigl(t,\Delta\tilde T_k\bigr),dW_t+\dots

3.Ito^引理处理 3. 用 Itô 引理处理

R_{m,n}(t)=\frac{P(t,T_m)-P(t,T_n)}{A_{m,n}(t)}

得到得到

\boxed{; \gamma_{m,n}(t)=\frac{1}{R_{m,n}(t)}\sum_{k=m+1}^{n}\alpha_k,\Sigma!\bigl(t,\Delta\tilde T_k\bigr) ;}, \qquad \boxed{; \alpha_k=\frac{\Delta\tilde T_k,P(t,T_k)}{\sum_{j=m+1}^{n}\Delta\tilde T_j,P(t,T_j)} ;} .

- $\alpha_k$ 是固定腿第 $k$ 期现金流在年金里的 **折现权重**,满足 $\sum_{k=m+1}^{n}\alpha_k=1$。 --- ## 4. 从年金测度回到风险‑中性测度 $Q$ Girsanov 变换:

dW_t^{A}=dW_t-\underbrace{\Sigma_{m,n}(t)}{\text{漂移补偿}},dt, \quad \Sigma{m,n}(t)=\sum_{k=m+1}^{n}\alpha_k,\Sigma!\bigl(t,\Delta\tilde T_k\bigr).

> **风险‑中性测度下最终公式** > $$ > \boxed{% > dR_{m,n}(t)=R_{m,n}(t)\,\gamma_{m,n}(t)\Bigl(dW_t-\Sigma_{m,n}(t)\,dt\Bigr) > } \tag{37} > $$ > 其中 > $$ > \boxed{\; > \Sigma_{m,n}(t)=\sum_{k=m+1}^{n}\alpha_k\,\Sigma\!\bigl(t,\Delta\tilde T_k\bigr) > \;} \tag{38} > $$ --- ## 5. 思路回顾 1. **写出掉期利率的“差/和”表达** 2. **选 numeraire** 让贴现值成鞅 &rarr; 漂移 0 3. **Itô** &rarr; 给出 $\gamma_{m,n}(t)$ 4. **Girsanov** &rarr; 加上 $-\Sigma_{m,n}(t)dt$ 漂移回 $Q$ > 关键记忆: > - **选鞅测度** &rarr; “漂移归零”好算波动率 > - **测度切换** &rarr; “补回漂移”得风险‑中性 SDE --- ### 📚 推荐阅读 & 练习 - **Brigo & Mercurio, _Interest Rate Models – Theory and Practice_**, Ch. 4–5 - F. Black (1976), “The Pricing of Commodity Contracts” - 练习: 1. 假设 $\gamma_{m,n}$ 常数 &rarr; 推 Black‑76 闭式价 2. 改成 Hull‑White 或 LMM,写出对应 $\gamma_{m,n}(t)$ --- 如有进一步问题,或想把某一步算得更细、举数值例子,随时告诉我!

分享這個問答