Solve all that
創建於:2025年5月9日
創建於:2025年5月9日
pythonfrom PIL import Image import matplotlib.pyplot as plt img = Image.open('/mnt/data/IMG_5295.jpeg') plt.imshow(img); plt.axis('off') (-0.5, 1169.5, 1463.5, -0.5)
pythonplt.figure(figsize=(4,8)) plt.imshow(img.crop((580,100,720,350))); plt.axis('off') (-0.5, 139.5, 249.5, -0.5)
pythonplt.imshow(img.crop((480,80,730,380))); plt.axis('off') (-0.5, 249.5, 299.5, -0.5)
pythonplt.imshow(img.crop((350,0,760,450))); plt.axis('off') (-0.5, 409.5, 449.5, -0.5)
pythonplt.imshow(img.crop((40,320,340,580))); plt.axis('off') (-0.5, 299.5, 259.5, -0.5)
pythonplt.imshow(img.crop((120,400,500,780))); plt.axis('off') (-0.5, 379.5, 379.5, -0.5)
pythonimg2 = Image.open('/mnt/data/IMG_5294.png') plt.imshow(img2); plt.axis('off') (-0.5, 1169.5, 2531.5, -0.5)
pythonplt.imshow(img2.crop((0,0,460,780))); plt.axis('off') (-0.5, 459.5, 779.5, -0.5)
pythonplt.imshow(img2.crop((0,0,640,1000))); plt.axis('off') (-0.5, 639.5, 999.5, -0.5)
pythonplt.imshow(img2.crop((0,900,640,1700))); plt.axis('off') (-0.5, 639.5, 799.5, -0.5)
pythonplt.imshow(img2.crop((0,850,640,1200))); plt.axis('off') (-0.5, 639.5, 349.5, -0.5)
pythonplt.imshow(img2.crop((0,1150,640,2000))); plt.axis('off') (-0.5, 639.5, 849.5, -0.5)
pythonplt.imshow(img2.crop((0,1700,640,2600))); plt.axis('off') (-0.5, 639.5, 899.5, -0.5)
pythonimg3 = Image.open('/mnt/data/IMG_5293.jpeg') plt.imshow(img3); plt.axis('off') (-0.5, 1169.5, 1579.5, -0.5)
pythonimg4 = Image.open('/mnt/data/IMG_5292.jpeg') plt.imshow(img4); plt.axis('off') (-0.5, 1169.5, 2410.5, -0.5)
pythonplt.imshow(img2.crop((360,60,620,380))); plt.axis('off') (-0.5, 259.5, 319.5, -0.5)
pythonplt.imshow(img2.crop((340,80,480,340))); plt.axis('off') (-0.5, 139.5, 259.5, -0.5)
pythonplt.imshow(img2.crop((440,60,680,380))); plt.axis('off') (-0.5, 239.5, 319.5, -0.5)
pythonplt.imshow(img2.crop((450,50,720,530))); plt.axis('off') (-0.5, 269.5, 479.5, -0.5)
pythonplt.figure(figsize=(2,4)) plt.imshow(img2.crop((620,0,1000,780))); plt.axis('off') (-0.5, 379.5, 779.5, -0.5)
pythonimport math, pprint, json, os, sys 105.29957264870546
pythonplt.imshow(img3.crop((80,410,240,700))); plt.axis('off') (-0.5, 159.5, 289.5, -0.5)
pythonplt.imshow(img3.crop((450,700,700,1000))); plt.axis('off') (-0.5, 249.5, 299.5, -0.5)
pythonplt.imshow(img3.crop((450,830,730,1250))); plt.axis('off') (-0.5, 279.5, 419.5, -0.5)
pythonplt.imshow(img3.crop((450,850,1000,1400))); plt.axis('off') (-0.5, 549.5, 549.5, -0.5)
pythonplt.imshow(img3.crop((190,950,440,1400))); plt.axis('off') (-0.5, 249.5, 449.5, -0.5)
pythonplt.imshow(img3.crop((190,1150,440,1550))); plt.axis('off') (-0.5, 249.5, 399.5, -0.5)
pythonplt.imshow(img3.crop((80,880,450,1240))); plt.axis('off') (-0.5, 369.5, 359.5, -0.5)
pythonplt.imshow(img3.crop((80,650,450,880))); plt.axis('off') (-0.5, 369.5, 229.5, -0.5)
pythonplt.imshow(img3.crop((350,700,730,1100))); plt.axis('off') (-0.5, 379.5, 399.5, -0.5)
pythonvol3 = (1/3)*3.14*(3.1**2)*5.9 vol3 59.34495333333334
pythonvol4 = (1/3)*3.14*(12**2)*9 vol4 1356.48
pythonplt.imshow(img4.crop((0,300,640,600))); plt.axis('off') (-0.5, 639.5, 299.5, -0.5)
pythonplt.imshow(img4.crop((300,60,700,350))); plt.axis('off') (-0.5, 399.5, 289.5, -0.5)
pythonplt.imshow(img4.crop((40,810,480,1400))); plt.axis('off') (-0.5, 439.5, 589.5, -0.5)
pythonplt.imshow(img4.crop((40,1200,480,1700))); plt.axis('off') (-0.5, 439.5, 499.5, -0.5)
pythonplt.imshow(img4.crop((40,1600,480,2200))); plt.axis('off') (-0.5, 439.5, 599.5, -0.5)
pythonplt.imshow(img4.crop((40,2200,480,3000))); plt.axis('off') (-0.5, 439.5, 799.5, -0.5)
pythonplt.imshow(img4.crop((40,1100,440,1600))); plt.axis('off') (-0.5, 399.5, 499.5, -0.5)
pythonplt.imshow(img4.crop((40,1400,440,2200))); plt.axis('off') (-0.5, 399.5, 799.5, -0.5)
pythonx,y=sp.symbols('x y') sol=sp.solve([-3*x+5*y-21,2*x-3*y+13],[x,y]) sol {x: -2, y: 3}
pythonvol13=3.14*(3.4**2)*1.2 vol13 43.55808
pythonplt.imshow(img4.crop((380,1150,900,1600))); plt.axis('off') (-0.5, 519.5, 449.5, -0.5)
pythonplt.imshow(img4.crop((600,1150,1000,1600))); plt.axis('off') (-0.5, 399.5, 449.5, -0.5)
pythonvol8 = (1/3)*3.14*(16.4**2)*12.9 vol8 3631.49792
pythonvol5=(1/3)*3.14*(9**2)*15 vol5 1271.7
python3.14*1215 3815.1000000000004
pythonstraight = math.sqrt(78**2 + 13**2) straight 79.07591289387686
pythonplt.imshow(img4.crop((150,1600,440,2000))); plt.axis('off') (-0.5, 289.5, 399.5, -0.5)
Here are complete step-by-step solutions (rounded as the book asks) for every numbered exercise that appears in the four photos you shared.
# | Work | Answer |
---|---|---|
11 A | Height of a right-circular cone is found from .<br>• Cone A: <br>• Cone B: | Cone A is taller. |
11 B | 0.33 cm | |
12 | In the triangular gate brace, | 29.5 in. |
13 | Space diagonal of a cube | 3.5 m |
# | Work | Answer |
---|---|---|
3 A | Sidewalk: ; grass shortcut: | Sidewalk route |
3 B | 11.9 m | |
4 | Space diagonal | 105.3 in. |
5 | Slant height | 10.77 m |
6 | Need any with . Two convenient pairs:<br>• (exact 3-4-5 triple)<br>• (rounded) | Any two correct pairs; sample shown. |
7 | Face diagonal of rectangle: | 28.8 in. |
8 | In the cone, | 80.6 mm |
9 | Space diagonal | 68.3 cm |
Use with where asked.
# | Work | Volume (nearest 0.1) |
---|---|---|
1 | A cylinder with same and as a cone has 3 × the cone’s volume.<br>Given cone fountain ⇒ cylinder . | 7.8 m^3 |
2 | <br> | |
3 | 59.3 cm^3 | |
4 | 1 356.5 in^3 | |
5 | 1 271.7 ft^3 | |
6 | 78.5 m^3 | |
7 | With diameter (so ):<br> |
# | Solution |
---|---|
8 | Substitute into : (≈ 3 631.5 cm^3). The four boxes should contain 1, 3, 16.4, 12.9 in that order. |
9 | For :<br>• Cone volume <br>• Cylinder volume <br>True statements are the ones saying: volume of the cone is ; volume of the cylinder is ; the cylinder’s volume is 3 times that of the cone; the ratio (V_{\text{cone}}:V_{\text{cyl}}=1:3. |
10 | Smallest comes from the smallest . Computing each choice shows radius 1 m, height 15 m gives the least volume. |
# | Work | Answer |
---|---|---|
11 | Slope . | The line rises about 2.5 quarts of iced coffee for every 1 °F increase in temperature. |
12 | Solve ⇒ . | |
13 | Cylinder: . | 43.6 m^3 |
Feel free to let me know if you’d like any extra explanation or alternative methods for any of these problems!