NOVOSENSE NSi83085/NSi83086: High Reliability Isol...
創建於:2025年2月9日
創建於:2025年2月9日
-50
mV
−7V ≤ VCM ≤ 12V
Receiver Input Hysteresis
ΔVTH
15
mV
VA+VB=0
Receiver Input Resistance
RIN
96kΩ
−7V ≤ VCM ≤ 12V, DE=low
2.2. SWITCHING ELECTRICAL CHARACTERISTICS
(VDD1=2.5V5.5V, VDD2=2.5V5.5V, Ta=--40℃℃ to 105℃℃. Unless otherwise noted, Typical values are at VDD1 = 5V, VDD2 = 5V, Ta = 25℃℃) Parameters Symbol Min Typ Max Unit Comments
Driver (NSi83085)
Maximum Data Rate
fMAX
0.5
Mbps
Driver Propagation Delay
t PLH
450
675
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
t PHL
430
645
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
Driver Pulse Width Distortion,|t PHL –– t PLH |
PWD
20
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
Driver Output Falling Time or Rising time
tF
590
885
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
tR
590
885
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
Driver Enable to Output High
tZH
310
465
ns
See Figure 2.4.3,,RL=110Ω,,CL=50pF
Driver Enable to Output Low
tZL
310
465
ns
See Figure 2.4.3,,RL=110Ω,,CL=50pF
Driver Output High to Disable
tHZ
30
45
ns
See Figure 2.4.3,,RL=110Ω,,CL=50pF
Driver Output Low to Disable
tLZ
30
45
ns
See Figure 2.4.3,,RL=110Ω,,CL=50pF
Receiver (NSi83085)
Maximum Data Rate
fMAX
0.5
Mbps
Receiver Propagation Delay
t PLH
102
153
ns
See Figure 2.4.4,, CL=15pF
t PHL
92
138
ns
See Figure 2.4.4,, CL=15pF
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 6
Receiver Pulse Width Distortion
PWD
10
ns
|t PHL –– t PLH |,See Figure 2.4.4,, CL=15pF
Receiver Output Falling Time or Rising time
tF
2.5
3.75
ns
See Figure 2.4.4,, CL=15pF
tR
2.5
3.75
ns
See Figure 2.4.4,, CL=15pF
Receiver Enable to Output High
tZH
18.5
27.75
ns
See Figure 2.4.5,,RL=1kΩ,,CL=15pF
Receiver Enable to Output Low
tZL
18.5
27.75
ns
See Figure 2.4.5,,RL=1kΩ,,CL=15pF
Receiver Disable to Output High
tHZ
23
34.5
ns
See Figure 2.4.5,,RL=1kΩ,,CL=15pF
Receiver Disable to Output Low
tLZ
23
34.5
ns
See Figure 2.4.5,,RL=1kΩ,,CL=15pF
Driver (NSi83086)
Maximum Data Rate
fMAX
16
Mbps
Driver Propagation Delay
t PLH
12
18
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
t PHL
13.5
20.25
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
Driver Pulse Width Distortion,|t PHL –– t PLH |
PWD
1.5
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
Driver Output Falling Time or Rising time
tF
2.95
4.425
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
tR
2.6
3.9
ns
See Figure 2.4.2,,RL=54Ω,,CL=50pF
Driver Enable to Output High
tZH
18.5
27.75
ns
See Figure 2.4.3,,RL=110Ω,,CL=50pF
Driver Enable to Output Low
tZL
19.1
28.65
ns
See Figure 2.4.3,,RL=110Ω,,CL=50pF
Driver Disable to Output High
tHZ
20.8
31.2
ns
See Figure 2.4.3,,RL=110Ω,,CL=50pF
Driver Disable to Output Low
tLZ
20.1
30.15
ns
See Figure 2.4.3,,RL=110Ω,,CL=50pF
Receiver (NSi83086)
Maximum Data Rate
fMAX
16
Mbps
Receiver Propagation Delay
t PLH
16.2
24.3
ns
See Figure 2.4.4,, CL=15pF
t PHL
22.2
33.3
ns
See Figure 2.4.4,, CL=15pF
Receiver Pulse Width Distortion, |t
PWD
6.0
ns
See Figure 2.4.4,, CL=15pF
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 7
PHL –– t PLH |
Receiver Output Falling Time or Rising time
tF
2.3
3.45
ns
See Figure 2.4.4,, CL=15pF
tR
2.1
3.15
ns
See Figure 2.4.4,, CL=15pF
Receiver Enable to Output High
tZH
13.8
20.7
ns
See Figure 2.4.5,,RL=1kΩ,,CL=15pF
Receiver Enable to Output Low
tZL
12.6
18.9
ns
See Figure 2.4.5,,RL=1kΩ,,CL=15pF
Receiver Disable to Output High
tHZ
14
21
ns
See Figure 2.4.5,,RL=1kΩ,,CL=15pF
Receiver Disable to Output Low
tLZ
13.4
20.1
ns
See Figure 2.4.5,,RL=1kΩ,,CL=15pF
2.3. TYPICAL PERFORMANCE CHARACTERISTICS
Figure 2.1 NSi83085 VDD1 supply current vs Temperature Figure 2.2 NSi83085 VDD2 supply current vs Temperature
Figure 2.3 NSi83086 VDD1 supply current vs Temperature Figure 2.4 NSi83086 VDD2 supply current vs Temperature
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 8
Figure 2.5 Receiver output current vs Output low voltage Figure 2.6 Receiver output current vs Output High voltage
Figure 2.9 NSi83085 Transmitter Propagation Delay vs Temperature Figure 2.10 NSi83085 Receiver Propagation Delay vs Temperature
Figure 2.11 NSi83086 Transmitter Propagation Delay vs Temperature Figure 2.12 NSi83086 Receiver Propagation Delay vs Temperature
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 9
2.4. PARAMETER MEASUREMENT INFORMATION
Y
Z
VOD
RL/2
RL/2 VOC
Figure 2.4.1 Driver DC Test Load
D
VOD RL CL
Y
Z
Figure 2.4.2 Driver Timing Test Circuit and waveform
D
Y
Z
50ohm
DE
CL VDD2
OUT
GND or
VDD1
Figure 2.4.3 Driver Enable Disable Timing Test Circuit and waveform
A R
RE
15pF
OUT
B
Figure 2.4.4 Receiver Propagation Delay Test Circuit and waveform
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 10
A R
50ohm
RE
15pF VDD1
OUT
+1.5V
-1.5V B
Figure 2.4.5 Receiver Enable Disable Timing Test Circuit and waveform
VDD1
GND2
A
B
GND1 VDD2
/RE
R
D
DE
VDD1
0.8V
or 2V
15pF
VOUT
GND1
Figure 2.4.6 Common-Mode Transient Immunity Test Circuit
3.0 HIGH VOLTAGE FEATURE DESCRIPTION
3.1. INSULATION AND SAFETY RELATED SPECIFICATIONS
Parameters Symbol Value Unit Comments
Minimum External Air Gap
(Clearance)
L(I01) 8.0 mm Shortest terminal-to-terminal
distance through air
Minimum External Tracking
(Creepage)
L(I02) 8.0 mm Shortest terminal-to-terminal
distance across the package
surface
Minimum internal gap DTI 20 um Distance through insulation
Tracking Resistance(Comparative
Tracking Index)
CTI >400 V DIN EN 60112 (VDE 0303-11);
IEC 60112
Material Group Ⅱ
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 11
3.2. DIN VDE V 0884-11(VDE V 0884-11):2017-01 INSULATION CHARATERISTICS Description Test Condition Symbol Value Unit
Installation Classification per DIN VDE 0110
For Rated Mains Voltage ≤ 150Vrms
Ⅰ
Ⅰto ⅣⅣ
For Rated Mains Voltage ≤ 300Vrms
Ⅰ
Ⅰto ⅣⅣ
For Rated Mains Voltage ≤ 400Vrms
Ⅰ
Ⅰto ⅣⅣ
Climatic Classification
10/105/21
Pollution Degree per DIN VDE 0110, Table 1
2
Maximum repetitive isolation voltage
VIORM
849
Vpeak
Input to Output Test Voltage, Method B1
V IORM × 1.5 = V pd (m) , 100% production test,
t ini = t m = 1 sec, partial discharge < 5 pC
V pd (m)
1273
Vpeak
Input to Output Test Voltage, Method A
After Environmental Tests Subgroup 1
V IORM × 1.2 = V pd (m) , t ini = 60 sec, t m = 10 sec, partial discharge < 5 pC
V pd (m)
1019
Vpeak
After Input and /or Safety Test Subgroup 2 and Subgroup 3
V IORM × 1.2= V pd (m) , t ini = 60 sec, t m = 10 sec, partial discharge < 5 pC
V pd (m)
1019
Vpeak
Maximum transient isolation voltage
t = 60 sec
VIOTM
7000
Vpeak
Maximum Surge Isolation Voltage
Test method per IEC60065,1.2/50us waveform, VTEST=1.3×VIOSM
VIOSM
5384
Vpeak
Isolation resistance
VIO =500V
RIO
109
Ω
Isolation capacitance
f = 1MHz
CIO
0.6
pF
Input capacitance
CI
2
pF
Total Power Dissipation at 25℃℃
Ps
1499
mW
Safety input, output, or supply current θJA = 140 °C/W, V I = 5.5 V, T J = 150 °C, T A = 25 °C
Is
mA
θJA = 84 °C/W, V I = 5.5 V, T J = 150 °C, T A = 25 °C
237
mA
Case Temperature
Ts
150
℃
℃
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 12
Figure 3.1 NSi83085/NSi83086 Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884--11
Figure 3.2 NSi83085/NSi83086 Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884--11
3.3. REGULATORY INFORMATION
The NSi83085/NSi83086 are approved or pending approval by the organizations listed in table. CUL VDE CQC
UL 1577 Component Recognition Program1
Approved under CSA Component Acceptance Notice 5A
DIN VDE V 0884--11(VDE V 0884--11):2017--012
Certified by CQC11--471543--2012
GB4943.1--2011
Single Protection, 5000Vrms Isolation voltage
Single Protection, 5000Vrms Isolation voltage
Basic Insulation 1131Vpeak, VIOSM=5384Vpeak
Basic insulation at 800VRMS (1131Vpeak)
Reinforced insulation at 400VRMS (565Vpeak)
File (E500602)
File (E500602)
File (5024579--4880--0001)
File (pending)
1 In accordance with UL 1577, each NSi83085/NSi83086 is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec.
2 In accordance with DIN VDE V 0884--11, each NSi8100W/NSi8101W is proof tested by applying an insulation test voltage ≥ 1273 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN VDE V 0884--11 approval.
0
0
20
20
40
40
60
60
80
80
100
100
120
120
140
140
160
160
180
180
0
0
50
50
100
100
150
150
200
200
Saftey Limiting Current (mA)
Saftey Limiting Current (mA)
Case Temperature (
Case Temperature (℃℃))
0
0
50
50
100
100
150
150
200
200
250
250
0
0
50
50
100
100
150
150
200
200
Saftey Limiting Current (mA)
Case Temperature (
Case Temperature (℃℃))
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 13
4.0 FUNCTION DESCRIPTION
NSi83085 is a high reliability isolated half duplex RS--485 transceiver , while NSi83086 is an isolated full duplex RS--485 transceiver. Data isolation is achieved using Novosense integrated capacitive isolation that allows data transmission between the logic side and the Bus side. Both devices are safety certified by UL1577 support 5kVRMS insulation withstand voltages.
4.1. DATA RATE
The data rate of NSi83085 is 500kbps. The device is slew limited to reduce EMI and reflections with improperly terminated transmission line. The data rate of NSi83086 is up to 16Mbps.
4.2. TRUE FAIL-SAFE RECEIVER INPUTS
The devices feature fail--safe circuitry, which guarantees a logic--high receiver output when the receiver inputs are open or shorted. The receiver threshold is fixed between --50mV and --200mV, which meets EIA/TIA--485 standard. If the differential input voltage (VA--VB) is greater than or equal to --50mV, receiver output R is logic high. In the case of a terminated bus with all transmitters disabled, the differential input voltage is pulled to zero by the termination resistors. Due to the receiver threshold, the receiver output R is logic high.
4.3. TRUTH TABLES
Table 4.1 Driver Function Table VDD1 status VDD2 status Input (D) Enable Input (DE) Outputs1 A/Y B/Z
PU
PU
H
H
H
L
PU
PU
L
H
L
H
PU
PU
X
L
Z
Z
PU
PU
X
OPEN
Z
Z
PU
PU
OPEN
H
H
L
PD
PU
X
X
Z
Z
PU
PD
X
X
Z
Z
PD
PD
X
X
Z
Z
1 PD= Powered down; PU= Powered up; H= Logic High; L= Logic Low; X= Irrelevant; Z= High Impedance; Driver output pins are Y and Z for NSi83086, A and B for NSi83085;
Table 4.2 Reciever Function Table1 VDD1 status VDD2 status Differential Input (VA--VB) Enable Input (/RE) Output (R)
PU
PU
≥--50mV
L/Open
H
PU
PU
≤--200mV
L/Open
L
PU
PU
Open/Short
L/Open
H
PU
PU
X
H
Z
PU
PU
Idle
L
H
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 14
PD PU X X Z
PU PD X X H
PD PD X X Z
1 PD= Powered down; PU= Powered up; H= Logic High; L= Logic Low; X= Irrelevant; Z= High Impedance.
4.4. THERMAL SHUTDOWN
The device is protected from over temperature damage by integrated thermal shutdown circuitry. When the junction temperature (TJ)
exceeds +165°C (typ), the driver outputs go high-impedance. The device resumes normal operation when TJ falls below +145°C (typ).
5.0 APPLICATION NOTE
5.1. 256 TRANSCEIVERS ON THE BUS
The devices have a 1/8-unit-load receiver input impedance (96kΩ) that allows up to 256 transceivers on the bus. Connect any
combination of these devices, and/or other RS-485 devices, for a maximum of 32 unit-loads to the line.
5.2. ESD PROTECTION
ESD protection structures are enhanced on all pins to protect against electrostatic discharge encountered during handing and
assembly. The Bus pins have extra protection against static electricity to both the logic side (VDD1 side) and bus side (VDD2 side).
ESD protection can be tested in various ways. Below is the ESD spec of the devices.
Bus pins:
± 8kV HBM.
±16kV using the Contact Discharge method specified in IEC 61000-4-2
Other pins except bus pins:
±6kV HBM.
±7kV using the Contact Discharge method specified in IEC 61000-4-2
5.3. LAYOUT CONSIDERATIONS
The NSi83085/NSi83086 requires a 0.1 μF bypass capacitor between VDD1 and GND1, 10uF bypass capacitor between VDD2 and
GND2. The capacitor should be placed as close as possible to the package. To eliminate line reflections, each cable end is terminated
with a resistor, whose value matches the characteristic impedance of the cable. It’s good practice to have the bus connectors and
termination resistor as close as possible to the A and B, Y and Z pins.
5.4. TYPICAL APPLICATION
VDD1
R
DE
GND2
A
B
GND1
D
/RE
VDD2
MICROPROCESSOR
AND UART
Figure 5.1 NSi83085 typical application circuit
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 15
R
A
B
D
/RE
DE
R
A
B
D
/RE
DE
R
B A
/RE DE D
Figure 5.2 Typical isolated Half-Duplex RS-485 application
VDD1
R
DE
GND2
A
B
GND1
D
/RE
Z
Y
VDD2
MICROPROCESSOR
AND UART
Figure 5.3 NSi83086 typical application circuit
R A
/RE B
Z
Y R
DE
A
B
D
/RE
Z
Y
R DE
A
B
/RE D
Z
Y
Master Slave
Slave
Figure 5.4 Typical isolated Full-Duplex RS-485 application
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 16
6.0 PACKAGE INFORMATION
VDD1
R
DE
GND1
GND2
A
NSi83085
B
GND2
GND1
D
/RE
NC
NC
1
2
3
4
5
6
7
8 9
10
11
12
13
14
15
16
GND1
VDD2
GND2
Figure 6.1 NSi83085 Package
VDD1
R
DE
GND1
GND2
A
NSi83086
B
GND2
GND1
D
/RE
Z
Y
1
2
3
4
5
6
7
8 9
10
11
12
13
14
15
16
GND1
VDD2
GND2
Figure 6.2 NSi83085 Package
Figure 6.3 SOIC16 Package Shape and Dimension
Dimensions shown in millimeters and (inches)
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 17
Table6.1 NSi83085 Pin Configuration and Description NSi83085 PIN NO. SYMBOL FUNCTION
1
VDD1
Power Supply for Isolator Side 1
2
GND1
Ground 1, the ground reference for Isolator Side 1
3
R
Receive output
4
/RE
Receive enable input. This is an active low input.
5
DE
Driver enable input. This is an active high input
6
D
Driver transmit data input.
7
GND1
Ground 1, the ground reference for Isolator Side 1
8
GND1
Ground 1, the ground reference for Isolator Side 1
9
GND2
Ground 2, the ground reference for Isolator Side 2
10
GND2
Ground 2, the ground reference for Isolator Side 2
11
NC
No Connection.
12
A
Noninverting Driver Output/Receiver Input. When the driver is disabled, or when VDD1 or VDD2 is powered down, Pin A is put into a high impedance state to avoid overloading the bus.
13
B
Inverting Driver Output/Receiver Input. When the driver is disabled, or when VDD1 or VDD2 is powered down, Pin B is put into a high impedance state to avoid overloading the bus.
14
NC
No Connection.
15
GND2
Ground 2, the ground reference for Isolator Side 2
16
VDD2
Power Supply for Isolator Side 2
Table6.2 NSi83086 Pin Configuration and Description NSi83086 PIN NO. SYMBOL FUNCTION
1
VDD1
Power Supply for Isolator Side 1
2
GND1
Ground 1, the ground reference for Isolator Side 1
3
R
Receive output
4
/RE
Receive enable input. This is an active low input.
5
DE
Driver enable input. This is an active high input
6
D
Driver transmit data input.
7
GND1
Ground 1, the ground reference for Isolator Side 1
8
GND1
Ground 1, the ground reference for Isolator Side 1
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 18
9
GND2
Ground 2, the ground reference for Isolator Side 2
10
GND2
Ground 2, the ground reference for Isolator Side 2
11
Y
Noninverting Driver Output. When the driver is disabled, or when VDD1 or VDD2 is powered down, Pin Y is put into a high impedance state to avoid overloading the bus.
12
Z
Inverting Driver Output. When the driver is disabled, or when VDD1 or VDD2 is powered down, Pin Z is put into a high impedance state to avoid overloading the bus.
13
B
Inverting Receiver Input.
14
A
Noninverting Receiver Input.
15
GND2
Ground 2, the ground reference for Isolator Side 2
16
VDD2
Power Supply for Isolator Side 2
7.0 TAPE AND REEL INFORMATION
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 19
Figure 7.1 Tape and Reel Information of WB SOIC16
8.0 ORDER INFORMATION Part No. Isolation Rating(kVRMS) Duplex Max Data Rate (MHz) Temperature No. of Nodes Package
NSi83085
5
Half
0.5
-40 to 105℃℃
256
WB SOIC16
NOTE: All packages are RoHS--compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures.
NSi83085/NSi83086
Copyright © 2019, NOVOSENSE Page 20
9.0 REVISION HISTORY
Revision Description Date
1.0
2018/7/15
1.2
Add NSi83086 spec
2018/10/15
1.3
Change table 3.1 VDE insulation Characteristics
2018/12/20
1.4
Change Certification Information
2019/06/17
我要用NSi83085芯片与GD32单片机连接,NSi83085的应用电路是什么,用中文回复
下面给出一个典型的 NSi83085(隔离型半双工 RS-485 收发器)与 GD32 系列单片机连接的参考应用电路示意,并对关键器件及引脚功能做简要说明。此电路可用于工业环境下的半双工 RS-485 通讯。
text┌───────────────┐ │ GD32 MCU │ │ │ Tx --->----│ PAx (Tx GPIO) │ Rx <-------│ PAy (Rx GPIO) │ DE/RE 控制 ----│ PAz (GPIO) │ │ │ └───────────────┘ | | VDD1=3.3V | | GND1 | | | |─────────────────────┐ | | ┌▼──────────────────────────▼─────────────────────┐ │ NSi83085 │ │ ┌─────────────────────────────────────────┐ │ VDD1=3.3V --------│1 │ VDD1 VDD2│16│--- 5V 或 3.3V(总线侧电源) GND1│2 │ GND1 GND2│15│--- GND2(隔离后地) R <--- MCU Rx│3 │ R NC │14│(NC 或保留) /RE <--- GPIO │4 │ /RE B │13│--- RS-485 总线 B DE ---> GPIO │5 │ DE A │12│--- RS-485 总线 A D ---> MCU Tx│6 │ D NC │11│(NC 或保留) GND1│7 │ GND1 GND2│10│--- GND2(隔离后地) GND1│8 └─────────────────────────────────────┬───┘9 │--- GND2(隔离后地) └──────────────────────────────────────────┘ (内部隔离屏障)
- A、B 为 RS-485 半双工总线接口;A 是同相端,B 是反相端。
- R 为接收数据输出(给 MCU 端);D 为发送数据输入(来自 MCU 端);DE、/RE 用于控制收发器的发送与接收使能。
- 逻辑侧电源:VDD1(如 3.3V),对应地脚:GND1
- 总线侧电源:VDD2(3.0V~5.5V 均可,常见为 5V),对应地脚:GND2
电源与去耦电容
数据端口
RS-485 总线端口
隔离与接地
保护措施与 EMC
软硬件使用要点
以上电路及说明可作为初步的参考设计,实际应用需根据系统的总线结构、 EMC/EMI 规范以及安全要求进行适当调整。希望对您在使用 NSi83085 与 GD32 进行 RS-485 通讯设计时有所帮助。
我计划总线侧有5v和GND过来,5v经过如11173.3芯片给单片机和NSi83085的VDD1用,5V接给VDD2用,这样对吗,但GND怎么隔离呢
如果您想真正发挥 NSi83085 隔离式 RS-485 收发器的作用,就必须确保芯片两侧 (VDD1/GND1 与 VDD2/GND2) 之间没有直接电气连接,也就是说两侧电源和地必须“隔离”开,这正是所谓“隔离”的意义所在。
隔离收发器的本质:
NSi83085 内部包含一个高压介质(电容/磁/光耦等形式),将“MCU 侧”与“RS-485 总线侧”在电气上进行物理隔离。这要求 MCU 端 (VDD1/GND1) 与总线端 (VDD2/GND2) 不共地,才能有效阻断地环电流和高压干扰,实现工业现场中常说的“地电位差隔离”、“保护人身和设备安全”的目的。
如果只有一套 5V 电源,并且它的 GND 只有一条,那么无论您是用 LDO(如 1117-3.3)把 5V 转成 3.3V 给 MCU 和 VDD1,还是直接 5V 给 VDD2,一旦这两个电源地线实质是同一根地线,就无法实现隔离。
这样做会导致 NSi83085 两侧的地 (GND1 和 GND2) 其实是短接的,内部隔离等效被“旁路”了,也就失去了隔离的意义。
通常有以下几种常见做法:
使用两路完全独立的电源
使用隔离式 DC/DC 模块
某些完整的“带隔离收发器”模块
简言之,不管哪种方式,都需要让芯片 GND1 与 GND2 之间“悬空”或只通过隔离介质交互信号,不能同一根地线直连。
以下是一个示意框图,展示了如果只有一路主 5V 电源,想要给 NSi83085 的 MCU 侧提供隔离电源时,该如何做(以“隔离 DC/DC”方案为例):
text主5V电源 ---->----- VDD2 (NSi83085 总线侧电源) | ┌─▼─────────────────────┐ │ 隔离式DC/DC模块 │ │ (输入: 5V, 输出:3.3V/5V ) └─┬─────────────────────┘ | [隔离输出] --->- VDD1 (NSi83085 MCU侧电源) | GND1 (隔离输出地) [主5V参考地] -> GND2 (NSi83085 总线侧地)
如上,希望能帮您理解“为什么 GND 无法直接共用”、以及“如何正确实现电源隔离和总线侧隔离供电”。只有满足这两点,NSi83085 的5kVrms 高压隔离才真正有效。
帮我推荐一个可以隔离的电源芯片,输出3.3V的,体积要小,必须中国产的
如果您已有 5V 输入电源,需要一个输出 3.3V 且带隔离的小体积电源模块,且希望选用国产品牌,可以重点考虑 金升阳(Mornsun) 旗下的隔离 DC/DC 系列。金升阳是国内较为知名的电源模块厂商,在小功率隔离电源领域有多种封装和规格可选。下面给您一个示例器件并说明其特点。
尺寸方面:B0503LS-1WR2 的封装长度与宽度都比较紧凑(典型 15.24mm×11.40mm,高度约 6mm),能够满足大部分对体积敏感的应用。
注:如果需要更高隔离耐压(如 6kV 或更高)或更高输出功率,也可查看金升阳其他系列(如 B05xxS-3W、B05xxS-6W 等),但尺寸会相应增大。
输入端 5V 电压范围
输出端功率与负载
隔离电压与安规
外围滤波与布局
工作环境温度
除了金升阳(Mornsun)以外,国内还有一些厂商也提供小体积隔离电源模块,例如:
在选型时,需要关注:
金升阳在工业控制、仪表等场景中应用广泛,资料相对齐全,故常被首选。
以下示例展示一个 5V 单电源输入,通过金升阳 B0503LS-1WR2 输出 3.3V 给 NSi83085(MCU 侧),从而实现真正的电气隔离。
text主5V电源(系统侧) │ │ 5V(输入) │ ┌────▼─────────────────────┐ │ 金升阳 B0503LS-1WR2 │ │ (隔离式 DC/DC 模块) │ └────┬─────────────────────┘ │ │ 3.3V(输出,隔离侧) ┌─▼────────────────┐ │ MCU + NSi83085 │ │ (VDD1/GND1 端) │ └──────────────────┘
这样就能既利用单路 5V 电源,又在隔离模块输出端得到 3.3V 隔离电源,满足 NSi83085 与 MCU 的正常工作并保持地线隔离。
以上,希望对您的隔离供电选型有所帮助。祝项目顺利!