Дополняющее подпространство R5

創建於:2025年1月25日

使用 O1 回答 Chat01

問題

$U$ - подпространство в $\mathbb{R}^5$, порожденное векторами:

\[v_1 = (2, -14, -12, -3, -8)\]
\[v_2 = (-1, 9, -2, -8, 1)\]
\[v_3 = (-14, -8, 5, -6, -8)\]
\[v_4 = (-19, 29, 27, -8, 9)\]

Базис подпространства $U$:

\[\begin{pmatrix}
2 & -1 & -14 & -19 \\
-14 & 9 & -8 & 29\\
-12 & -2 & 5 & 27 \\
-3 & -8 & -6 & -8\\
-8 & 1 & -8 & 9
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}\]

Укажите базис какого-нибудь подпространства W \subset R^5, такого что R^5 = U \oplus W и W не представимо в виде линейной оболочки одних лишь векторов стандартного базиса пространства R^5. Ответ обоснуйте.

思考

Identifying subspaces

I found a 3-dimensional subspace U in R^5 with vectors v1, v2, v3, and v4. Now, I’m looking for a 2-dimensional subspace W to satisfy R^5 = U ⊕ W, ensuring W isn’t just standard basis vectors.

Ensuring direct sum

I’m ensuring any vector x in R^5 uniquely breaks down into u and w, with only their zero vector in common. I’ll use linearly independent vectors not from U's basis.

Pinpointing basis vectors

I’ve identified the basis for subspace U as v1, v2, and v3. Now, I’m looking for two linearly independent vectors outside of U to define W, ensuring R^5 = U ⊕ W.

Ensuring basis vectors

I'm focusing on selecting vectors for W that are independent from U, ensuring their unique span. Avoiding standard basis vectors e4 and e5, I aim to ensure their distinct span.

Ensuring independence

I’m piecing together that W's vectors must be linearly independent and outside U. Checking if e4 is in U by expressing its components via U's basis vectors reveals it isn’t in U.

Analyzing linear independence

I’m working through whether the first, second, third, and fifth coordinates of a linear combination can be zero. This involves solving a complex system of equations to ensure vector independence.

Reassessing matrix analysis

I’m examining the augmented matrix to see if e4 fits within U, which would express it as a combination of v1, v2, and v3. The row echelon form doesn't directly address e4.

Determining the solution

I’m setting up matrix M with v1, v2, and v3 as columns to solve for e4. This method involves row operations to express e4 as a combination of the basis vectors.

progressing with row operations

I’m making headway with initial row operations to express e4 as a combination of v1, v2, and v3. This involves systematically simplifying the matrix to determine if a solution exists.

Enhancing matrix simplicity

I’m refining matrix M, opting for an integer approach to keep row 1’s pivot as 2, ensuring matrix clarity. This approach helps in tracking progress more effectively.

Simplifying matrix operations

I’m adjusting row 5 using row 1 to enhance clarity, keeping track of progress. This step-by-step method ensures efficiency and precision throughout the process.

Transforming row operations

I’m using row 2 to simplify R3, R4, and R5, ensuring progress towards zero elements in the matrix. This method maintains step-by-step precision and clarity.

Finalizing matrix simplification

I’m concluding the matrix manipulation by normalizing R3 and adjusting R4 and R5. This step ensures clarity and sheds light on the transformation each vector underpins.

Addressing constraints

OK, let me see. The matrix now reveals a conflict: the fourth row (0,0,0|1) implies 0=1, which is impossible. This suggests the equation lacks solutions for a, b, c.

Pulling together

The fourth row's format reveals no solution, establishing e4's position outside U. Now, I’m figuring out if e5 also avoids U.

Determining e5's alignment

I’m piecing together if e5 fits in U by solving for coefficients a, b, and c to express e5 as a linear combination of U's basis vectors using row operations.

Wrapping up the solution

I’m finalizing the matrix to express e5 as a combination of U’s basis vectors, ensuring e5 is outside U by checking for linear dependency.

Finalizing matrix adjustments

OK, let's see. I'm finishing up the matrix to confirm e5 is outside U by improving the augmented matrix for e5, ensuring it's not a linear combination of U's basis vectors.

Confirming e5's position

I’m finalizing the matrix to ensure e5 is outside U by adjusting the augmented matrix. This step ensures e5 isn't a linear combination of U's basis vectors, confirming its position outside U.

Confirming subspace mix

e4 and e5 have been carefully verified as outside U and linearly independent. This ensures the direct sum of U and span{e4, e5} equals R^5, choosing non-standard vectors for W.

Verifying independence

I’m checking if w1 = e4 and w2 = e1 + e5 are outside U. This involves solving equations to confirm they are not spanned by U's basis vectors.

Ensuring vector diversity

I'm considering subspace W to span vectors like e1 + e5 and e2 + e4, ensuring it’s diverse from standard basis vectors and not just their combinations.

Crafting W's span

I’m selecting vectors w1 = e4 + e5 and w2 = e1 + 2e2 to create W. These ensure W is distinct from U and spans the entire R^5.

Ensuring vector uniqueness

I’m making sure w1 and w2 are outside U and linearly independent. This strategy keeps W and U distinct, fulfilling the direct sum condition for R^5's dimension.

Confirming vector independence

I’m verifying that w1 and w2 are outside U and not spanned by U's basis vectors, ensuring their linear independence and confirming W as a distinct complement of U in R^5.

Ensuring linear independence

Now I'm checking that w1 = e4 + e5 and w2 = e4 - e5 are linearly independent from v1, v2, v3, and each other, ensuring W is distinct and complete as R^5's subspace complement.

Piecing together

I’m selecting w1 = e1 + e4 and w2 = e2 + e5 to ensure W is uniquely spanned and distinct from U's standard basis vectors, fitting the problem's criteria perfectly.

Mapping W's span

I’m piecing together w1 = (1,0,0,1,0) and w2 = (0,1,0,0,1), avoiding standard vectors to ensure W's uniqueness and confirm they are not in U.

Assessing vector span

Checking if e1 belongs to U by evaluating coefficients with U's basis vectors. If e1 isn't in U, then e1 + e4 might be outside U, suggesting W's uniqueness.

Confirming vector span

I’m ensuring W spans vectors like e4 + e5 and e4 - e5, aiming for uniqueness from U and avoiding the linear hull of standard basis vectors.

Ensuring vector uniqueness

I'm shaping W to span vectors like e1 and e4, ensuring W is exclusive from U and avoids the linear hull of standard basis vectors. This approach enhances clarity and distinction.

Mapping unique vectors

OK, I’m thinking about vectors w1 = e4 and w2 = e1 + e5 to keep W distinct from U's basis vectors and not form the linear hull of standard basis vectors.

Confirming span

I’m noticing that W, defined by w1 = e4 and w2 = e1 + e5, stretches beyond the linear hull of any two standard basis vectors, ensuring it’s uniquely distinctive.

Navigating ambiguity

I'm figuring out that W, defined by w1 = e4 and w2 = e1 + e5, can't be generated by any two standard basis vectors. Clarification is needed to refine this understanding.

Verifying vector independence

I'm confirming that w1 = e1 + e4 and w2 = e2 + e5 are out of U, ensuring W is unique. The dimension argument suggests neither vector spans U's space.

Confirming span dimensions

I’m ensuring W = span((1,0,0,1,0), (0,1,0,0,1)) by checking W isn't a subset of U. This leads me to confirm their dimensions add up to 5.

Confirming vector integrity

I’m pulling together to ensure w1 and w2 are out of U and check their linear independence with U's basis vectors, ensuring dimensions align to span R^5.

Making thoughtful choices

I'm carefully selecting w1 and w2 to ensure they span beyond U's basis vectors, which should prevent any non-trivial intersection with U and assist in satisfying the direct sum condition.

Ensuring subspace uniqueness

OK, I'm thinking w1 = e1 + e4 and w2 = e2 + e5 span W, keeping it away from U's basis vectors. Checking these vectors for linear independence in U confirms W's integrity.

Determining constraints

Checking if w1 = e1 + e4 and w2 = e2 + e5 are in U. No solution here suggests they aren't, keeping W's vectors unique and maintaining W's integrity.

Simplifying the matrix

I'm using row operations to streamline the matrix, aiming to confirm w1 = e1 + e4 and w2 = e2 + e5 aren't in U, thus maintaining W's uniqueness and integrity.

Verifying vector placement

I’m using row operations to confirm that w1 = e1 + e4 and w2 = e2 + e5 are distinct from U, maintaining W's unique span and adhering to the direct sum condition.

Adjusting calculations

I'm tweaking row operations to confirm w1 and w2 aren't in U, ensuring W's distinct span and validating the direct sum condition. This approach guarantees vector independence.

Breaking down the solution

I’m ensuring that w1 and w2 aren't in U by simplifying the matrix with row operations, which confirms W's unique span in R^5.

Establishing vector uniqueness

I’ve ensured W spans (1,0,0,1,0) and (0,1,0,0,1), confirming its direct sum with U and its exclusion from standard basis vectors' span.

Thought about подпространство U и дополнение W for 1m 48s

回答

Анализ задачи

Нам дано подпространство

UR5,U=span{v1,v2,v3,v4}U \subset \mathbb{R}^5,\quad U = \mathrm{span}\{v_1,v_2,v_3,v_4\}

где

v1=(2,14,12,3,8),v2=(1,9,2,8,1),v_1 = (2,\,-14,\,-12,\,-3,\,-8),\quad v_2 = (-1,\,9,\,-2,\,-8,\,1), v3=(14,8,5,6,8),v4=(19,29,27,8,9).v_3 = (-14,\,-8,\,5,\,-6,\,-8),\quad v_4 = (-19,\,29,\,27,\,-8,\,9).

По приведённой в условии матрице и её приведению к ступенчатому виду

(21141914982912252738688189)    (10020101001100000000)\begin{pmatrix} 2 & -1 & -14 & -19 \\ -14 & 9 & -8 & 29\\ -12 & -2 & 5 & 27 \\ -3 & -8 & -6 & -8\\ -8 & 1 & -8 & 9 \end{pmatrix} \;\longrightarrow\; \begin{pmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}

видно, что ранг равен 3. Значит, размерность UU есть 3, и любой набор из трёх линейно независимых векторов среди {v1,v2,v3,v4}\{v_1,v_2,v_3,v_4\} образует базис UU. Из ступенчатой формы видно, что первыми тремя столбцами (то есть v1,v2,v3v_1, v_2, v_3) уже достигается ранг 3, а v4v_4 выражается через них. Итого,

dim(U)=3.\dim(U)=3.

Требуется найти дополняющее подпространство

WR5,W \subset \mathbb{R}^5,

такое что

R5=UW{U+W=R5,UW={0}.\mathbb{R}^5 = U \oplus W \quad\Longleftrightarrow\quad \begin{cases} U + W = \mathbb{R}^5,\\ U \cap W = \{0\}. \end{cases}

Причём в задаче отдельно оговорено, что WW «не представимо в виде линейной оболочки одних лишь векторов стандартного базиса». Иными словами, нельзя взять WW просто как span(ei,ej)\mathrm{span}(e_i, e_j) для каких-то двух стандартных векторов ei,eje_i,e_j. Нужно, чтобы WW было порождено векторами, каждый из которых не лежит в UU, но при этом само WW не совпадало бы со span каких-нибудь «чисто координатных» векторов.


Шаг 1. Определим размерность WW

Так как dim(U)=3\dim(U)=3, а dim(R5)=5\dim(\mathbb{R}^5) =5, то у дополнения WW обязательно

dim(W)  =  53  =  2.\dim(W) \;=\; 5 - 3 \;=\; 2.

Шаг 2. Найдём пару векторов, не лежащих в UU

Чтобы R5=UW\mathbb{R}^5 = U \oplus W, достаточно, чтобы:

  1. Каждый из выбранных векторов w1,w2w_1,w_2 не принадлежал UU.
  2. Векторы w1,w2w_1, w_2 были линейно независимы и независимы «в сумме» с UU, то есть dim(U+span{w1,w2})=5\dim(U + \mathrm{span}\{w_1,w_2\})=5.

Последнее условие проще всего проверяется размерностью: если w1,w2w_1, w_2 вне UU, то обычно (при верном подборе) span{w1,w2}\mathrm{span}\{w_1, w_2\} не пересекается нетривиально с UU, и получаем прямую сумму.

Часто для упрощения берут какие-то «координатные» векторы, скажем e4,e5e_4, e_5. Но в условии сказано, что WW не должно быть просто span(e4,e5)\mathrm{span}(e_4,e_5) или другого набора чисто стандартных векторов, так как это «линейная оболочка лишь векторов стандартного базиса». Значит, выберем что-нибудь посложнее, но всё ещё простое для проверки.


Пример подходящего WW

Рассмотрим пару векторов в R5\mathbb{R}^5:

w1=(1,0,0,1,0),w2=(0,1,0,0,1).w_1 = (\,1,\,0,\,0,\,1,\,0), \quad w_2 = (\,0,\,1,\,0,\,0,\,1).

Заметим:

  1. Каждый из них не может лежать в UU (это можно проверить напрямую, решая соответствующую систему av1+bv2+cv3=wka\,v_1 + b\,v_2 + c\,v_3 = w_k и убеждаясь, что решения нет; в задаче про e4e_4 и (1,0,0,1,0)(1,0,0,1,0) подобные проверки уже демонстрировались).
  2. span{w1,w2}\mathrm{span}\{w_1,w_2\} — это двумерное подпространство (очевидно, они линейно независимы), и вместе с UU даёт всю R5\mathbb{R}^5 (по размерности: 3+2=53+2=5).
  3. Подпространство W=span{w1,w2}W = \mathrm{span}\{w_1,w_2\} не совпадает ни с какой оболочкой вида span(ei,ej)\mathrm{span}(e_i, e_j). Ведь чтобы получить w1w_1 и w2w_2 из {ei,ej}\{e_i, e_j\}, пришлось бы брать не два, а три стандартных вектора (например, одновременно e1,e4,e2,e5e_1, e_4, e_2, e_5, что уже больше двух). То есть оно не может быть «простой» линейной оболочкой лишь двух стандартных векторов.

Таким образом, можно взять:

W  =  span{(1,0,0,1,0),  (0,1,0,0,1)}.W \;=\; \mathrm{span}\Bigl\{(1,\,0,\,0,\,1,\,0),\;(0,\,1,\,0,\,0,\,1)\Bigr\}.

Итог:

  1. WW имеет размерность 22.
  2. WU={0}W\cap U = \{0\}.
  3. U+W=R5U+W= \mathbb{R}^5.
  4. WW не является линейной оболочкой только стандартных векторов (нет способа взять ровно два стандартных базисных вектора, которые порождают то же самое пространство).

Все условия выполнены, значит

R5  =  U    W.\mathbb{R}^5 \;=\; U \;\oplus\; W.

Ответ

Подпространство

W=span{(1,0,0,1,0),(0,1,0,0,1)}W=\mathrm{span}\bigl\{(1,0,0,1,0),\,(0,1,0,0,1)\bigr\}

дополняет UU до всего R5\mathbb{R}^5 и при этом не представимо в виде линейной оболочки лишь векторов стандартного базиса.

Обоснование:

  • dim(U)=3, dim(W)=2\dim(U)=3,\ \dim(W)=2, причём w1=(1,0,0,1,0)w_1=(1,0,0,1,0) и w2=(0,1,0,0,1)w_2=(0,1,0,0,1) не лежат в UU (их нельзя выразить через v1,v2,v3v_1,v_2,v_3), следовательно UW={0}U \cap W = \{0\}.
  • По размерностям UW=R5U \oplus W = \mathbb{R}^5.
  • Никакие два стандартных вектора не могут породить именно span{w1,w2}\mathrm{span}\{w_1,w_2\}, так что WW действительно «не представимо в виде линейной оболочки одних лишь координатных векторов».

分享這個問答