Радиус окружности в треугольнике
創建於:2025年1月7日
創建於:2025年1月7日
Analyzing the quadrilateral
I’m thinking through quadrilateral with intersecting diagonals at . Given conditions are: , , , , and the inradius of is 5. The task is to find the inradius of .
Piecing together
I’m working through the given elements: , , , , and the inradius of is 5. The goal is to find the inradius of .
Considering geometric implications
I’m gathering info on the shape possibilities of quadrilateral . With , it might be a trapezoid or isosceles trapezoid, leading to interesting geometric insights.
Applying geometric principles
I’m using the formula for the incircle radius of a triangle to relate areas and perimeters of and , considering their geometric properties and reciprocal relations.
Placing the quadrilateral
Hmm, I’m thinking about mapping quadrilateral on a coordinate plane, setting at the origin, on the x-axis, on the negative x-axis, on the positive y-axis, and on the negative y-axis.
Setting coordinates
Starting with at and on the positive x-axis as . Considering at and at to satisfy .
Analyzing coordinates
I’m positioning on the x-axis and on the same line. Using length, I’m ensuring is parallel to .
Ensuring parallelism
I’m working through the parallelism of and by setting the ratio of their vectors equal. This leads to equations to verify.
Confirming parallelism
I’m verifying is parallel to by ensuring the vector ratio is accurate, consistent with the known lengths.
Calculating triangle dimensions
OK, let's determine the inradius of with vertices , , and . The sides are , , and .
Calculating inradius
Taking a closer look at , which has an area of , a perimeter of , and a semiperimeter to find the inradius.
Solving for
Using the inradius formula for , I substituted the known values and tackled the equation to find , positioning at .
Finding
I’m solving for by noting the length and applying the distance formula to determine , confirming values for and .
Determining vector ratios
I’m working through parallel vectors to find 's coordinates by ensuring the ratio , aiming to locate and ultimately the inradius of .
Pinpointing P's coordinates
I set up the ratio , which led to . Calculating as , I confirmed .
Thought about радиус окружности в треугольниках por 1m 30s
Разбор задачи
Дан четырёхугольник с пересекающимися в точке диагоналями и , причём:
Требуется найти радиус вписанной окружности в .
Чтобы упростить вычисления, разместим точки в декартовой системе координат так, чтобы:
Таким образом, схема такая:
Ниже найдём неизвестные , и .
В треугольнике вершины:
Стороны:
Радиус вписанной окружности в прямоугольном треугольнике (угол при очевидно прямой) известен по формуле
где — катеты, — гипотенуза.
Здесь , , .
По условию . Тогда
Умножим на 2:
Возведём в квадрат:
Итого .
Длина между и равна 91:
Значит, .
Чтобы был параллелен , векторы должны быть пропорциональны:
Сравним вторые координаты:
Сравним первые координаты:
Значит, .
Итак, мы имеем:
Таким образом, — прямоугольный треугольник со сторонами .
Радиус вписанной окружности в прямоугольный треугольник со сторонами равен
Здесь , , . Тогда