联邦学习论文分析
創建於:2024年11月7日
使用 O1 Preview 回答 Chat01
創建於:2024年11月7日
使用 O1 Preview 回答 Chat01
目前有两篇联邦学习方向的论文。
其一是:Greedy Shapley Client Selection for Communication-Efficient Federated Learning
摘要为Abstract—The standard client selection algorithms for Federated Learning (FL) are often unbiased and involve uniform random sampling of clients. This has been proven sub-optimal for fast convergence under practical settings characterized by significant heterogeneity in data distribution, computing, and communication resources across clients. For applications having timing constraints due to limited communication opportunities with the parameter server (PS), the client selection strategy is critical to complete model training within the fixed budget of communication rounds. To address this, we develop a biased client selection strategy, GREEDYFED, that identifies and greedily selects the most contributing clients in each communication round. This method builds on a fast approximation algorithm for the Shapley Value at the PS, making the computation tractable for real-world applications with many clients. Compared to various client selection strategies on several real-world datasets, GREEDYFED demonstrates fast and stable convergence with high accuracy under timing constraints and when imposing a higher degree of heterogeneity in data distribution, systems constraints, and privacy requirements.
其二是:ISFL: Federated Learning for Non-i.i.d. Data with Local Importance Sampling
摘要为Abstract—As a promising learning paradigm integrating computation and communication, federated learning (FL) proceeds the local training and the periodic sharing from distributed clients. Due to the non-i.i.d. data distribution on clients, FL model suffers from the gradient diversity, poor performance, bad convergence, etc. In this work, we aim to tackle this key issue by adopting importance sampling (IS) for local training. We propose importance sampling federated learning (ISFL), an explicit framework with theoretical guarantees. Firstly, we derive the convergence theorem of ISFL to involve the effects of local importance sampling. Then, we formulate the problem of selecting optimal IS weights and obtain the theoretical solutions. We also employ a water-filling method to calculate the IS weights and develop the ISFL algorithms. The experimental results on CIFAR-10 fit the proposed theorems well and verify that ISFL reaps better performance, convergence, sampling efficiency, as well as explainability on non-i.i.d. data. To the best of our knowledge, ISFL is the first non-i.i.d. FL solution from the local sampling aspect which exhibits theoretical compatibility with neural network models. Furthermore, as a local sampling approach, ISFL can be easily migrated into other emerging FL frameworks.
请你帮助我分析这两篇论文
好的,让我帮助您分析这两篇关于联邦学习的论文。
论文一:Greedy Shapley Client Selection for Communication-Efficient Federated Learning
主要内容:
分析:
论文二:ISFL: Federated Learning for Non-i.i.d. Data with Local Importance Sampling
主要内容:
分析:
综合比较:
共同点:
不同点:
应用场景:
结论:
这两篇论文从不同的角度改进了联邦学习的效率和性能。论文一通过贪心选择高贡献度客户端,适用于通信和资源受限的环境;论文二通过本地重要性采样,提升了非i.i.d.数据下的模型性能和收敛性。
建议:
我想结合这两种算法在一起 即先通过GREEDYFED算法选择客户端 在通过ISFL算法在客户端训练时进行重要性采样 你觉得可行吗 将这个新算法命名为ISGREEDY
将 GREEDYFED 和 ISFL 这两种算法结合起来,创建一个名为 ISGREEDY 的新算法,这是一个有趣且有潜力的想法。让我们来分析一下这种组合的可行性,以及可能带来的优势和需要注意的挑战。
可行性分析:
算法阶段互补:
由于两种算法在联邦学习流程中的作用阶段不同,一个在全局的客户端选择阶段,另一个在本地的训练阶段,因此在理论上可以将它们结合起来,互不干扰。
功能互补性:
结合两者,可以同时应对系统异构性和数据异构性两大挑战。
潜在优势:
提高模型性能: 通过在全局和本地两个层面进行优化,ISGREEDY 有望在更少的通信轮次内达到更高的模型精度。
加速收敛: GREEDYFED 的客户端选择策略可以快速聚焦于贡献度高的客户端,ISFL 的重要性采样可以有效利用本地数据,提高梯度估计的质量,两者结合有助于加速模型的收敛。
应对异构性: 该组合方法可以同时处理系统资源异构(通过客户端选择)和数据分布异构(通过本地采样),使联邦学习更具鲁棒性。
通信效率: 减少了需要参与训练的客户端数量和通信负载,适用于通信资源有限的场景。
可能的挑战和注意事项:
计算复杂度:
解决方案: 可以研究更高效的 Shapley 值近似算法,或者在重要性采样中采用更轻量级的方法。
算法集成性:
理论分析:
实验验证:
建议和下一步工作:
算法设计:
理论研究:
实验验证:
优化改进:
结论:
将 GREEDYFED 和 ISFL 结合起来形成 ISGREEDY,是一个可行且有潜力的方向。它有望同时解决联邦学习中的系统异构性和数据异构性问题,提升模型性能和训练效率。然而,需要注意计算复杂度和算法集成带来的挑战。建议通过理论分析和大量实验来验证新算法的有效性,并在实践中不断优化。
最终建议:
希望这些分析和建议对您的研究有所帮助!
或者你觉得我应该如何在客户端选择阶段通过重要性采样来改进GREEDYFED算法?
当然!在客户端选择阶段通过引入重要性采样来改进 GREEDYFED 算法是一个值得探索的方向。这种方法有可能在保持 GREEDYFED 优势的同时,进一步提高模型的性能和收敛速度。下面我将详细分析这一想法的可行性、潜在优势、可能的挑战,以及如何实施这一改进。
1. GREEDYFED 算法:
2. 重要性采样(Importance Sampling,IS):
1. 理论基础:
2. 方法设想:
步骤 1:定义客户端的重要性指标
步骤 2:计算重要性采样权重
步骤 3:改进客户端选择策略
1. 更全面的客户端评估:
2. 提高模型性能和收敛速度:
3. 资源优化:
1. 计算复杂度增加:
2. 权重参数的确定:
3. 重要性指标的选择和计算:
4. 理论保证和收敛性分析:
1. 设计与实现:
2. 参数调优:
3. 实验评估:
4. 迭代改进:
步骤 1:计算 Shapley 值贡献度
步骤 2:计算重要性采样权重
步骤 3:综合得分计算
步骤 4:客户端选择
步骤 5:本地训练与模型更新
1. 动态权重调整:
2. 多目标优化:
3. 分层采样:
通过在 GREEDYFED 的客户端选择阶段引入重要性采样,可以进一步改进算法的性能,实现更高效、更公平的客户端选择。这种方法有助于:
然而,在实施过程中,需要注意计算复杂度、参数选择和理论保证等挑战。通过精心设计和持续优化,可以克服这些困难,实现预期的改进效果。
希望这些分析和建议对您的研究工作有所帮助!如果您有进一步的问题或需要讨论具体的实现细节,请随时告诉我。
该如何定义重要性指标,计算每个客户端的权重 wi?
好的,您想知道如何定义重要性指标,计算每个客户端的权重 ,以在客户端选择阶段改进 GREEDYFED 算法。下面,我将详细讨论如何定义重要性指标并计算权重 ,以帮助您实现这一目标。
定义客户端的重要性指标是关键的一步,它需要准确反映每个客户端对全局模型训练的潜在贡献。以下是一些常用的重要性指标,您可以根据实际情况选择或组合使用:
数据量(Data Volume):
数据多样性(Data Diversity):
数据质量(Data Quality):
数据罕见性(Data Rarity):
历史贡献度(Historical Contribution):
梯度更新范数(Gradient Update Norm):
计算能力(Computational Capability):
通信带宽(Communication Bandwidth):
可用性(Availability):
隐私偏好(Privacy Preference):
模型不确定性(Model Uncertainty):
一旦确定了重要性指标,就需要将这些指标转化为权重 。以下是几种常用的方法:
如果选择了一个主要指标,可以直接使用该指标值作为权重,或者经过归一化处理:
直接使用指标值:
归一化处理:
如果考虑多个指标,可以采用以下方法:
线性加权法:
公式:
其中, 是第 个指标的权重系数,满足 。
步骤:
指标标准化:为了使不同指标具有可比性,需要对每个指标进行标准化处理,例如最小-最大归一化或 Z-score 标准化。
确定权重系数:根据指标的重要程度,设置每个指标的权重系数 。
乘法模型:
公式:
特点:适用于指标之间相互增强的情况。
机器学习模型:
归一化:
确保权重之和为 1:
平滑处理:
防止权重差异过大,可以进行平滑处理,例如取对数或使用温度系数:
其中, 为温度参数, 时权重分布更平滑。
假设我们选择以下三个指标:
步骤 1:指标标准化
数据量标准化:
数据多样性标准化:
模型不确定性标准化:
步骤 2:确定权重系数
设定权重系数:
步骤 3:计算初始权重
线性加权求和:
步骤 4:权重归一化
归一化处理:
步骤 5:平滑处理(可选)
温度系数调整(设定 ):
再次归一化:
相关性分析:可以通过数据分析,评估各指标与模型性能提升之间的相关性,选择最有用的指标。
权重系数的调优:可以通过交叉验证或实验调参,确定最佳的权重系数 。
避免权重过大差异:如果某些客户端的权重过高,可能导致其他客户端长期不被选择,可以对权重设置上限。
引入随机性:在客户端选择过程中,可以根据权重 以概率方式进行采样,而不是总是选择权重最高的客户端。
本地计算指标:让客户端在本地计算指标值,服务器只获取必要的信息,保护客户端隐私。
差分隐私:在指标上传时,添加噪声以保护敏感信息。
在 GREEDYFED 中,Shapley 值用于评估客户端对模型的贡献。您可以将计算得到的权重 与 Shapley 值 结合,得到综合评分 :
步骤 1:归一化 Shapley 值
步骤 2:计算综合评分
设定参数 控制两者的平衡:
步骤 3:客户端选择
根据综合评分 对客户端进行排序,选择得分最高的客户端参与训练。
模拟实验:在模拟环境中测试不同的重要性指标和权重计算方法,观察对模型性能的影响。
参数调优:通过实验调整指标权重系数 和综合评分平衡参数 。
任务特定指标:根据具体的应用场景,添加特定的指标,例如在推荐系统中,可以考虑用户行为的活跃度。
指标组合:尝试不同的指标组合,找到最有效的方案。
计算效率:优化权重计算和客户端选择算法,减少计算开销。
分布式计算:利用分布式计算框架,加速指标计算和数据处理。
策略设计:设计机制确保所有客户端都有机会参与训练,例如设置最小参与次数。
多样性引入:在客户端选择时,考虑数据多样性,防止模型过拟合于特定数据分布。
通过精心定义重要性指标并计算每个客户端的权重 ,您可以在客户端选择阶段改进 GREEDYFED 算法。这一过程的关键在于:
选择合适的重要性指标:应与客户端对模型的实际贡献密切相关。
合理计算权重:考虑指标的标准化、权重系数的确定、平滑处理等。
平衡性能与公平性:在提升模型性能的同时,确保系统的公平性和稳定性。
持续优化与验证:通过实验和数据分析,不断优化指标选择和权重计算方法。
希望这些建议能帮助您在实践中有效地定义重要性指标和计算客户端权重。如果您有更多问题或需要进一步讨论,请随时告诉我!
抛开本课题,能请你完整的介绍一下重要性采样的流程吗
好的,我很乐意为您完整介绍一下**重要性采样(Importance Sampling)**的流程。
重要性采样是一种蒙特卡罗方法,用于估计难以直接计算的积分或期望值,尤其是在高维空间或复杂概率分布的情况下。它通过从一个更容易采样的分布(称为重要性分布)中生成样本,并对这些样本进行加权,以估计目标分布下的期望值。
假设我们需要计算函数 在概率分布 下的期望值:
当直接从 采样困难时,我们选择一个容易采样的分布 ,并利用以下等式:
这里, 被称为重要性权重。通过从 采样并计算权重,我们可以估计 。
步骤 1:选择重要性分布
步骤 2:从重要性分布 中采样
步骤 3:计算重要性权重
步骤 4:估计期望值
步骤 5:评估估计结果
选择合适的 对于重要性采样的效率至关重要。
常用方法:
优点:
缺点:
1. 自适应重要性采样
2. 重参数化技巧
3. 多重重要性采样
4. 权重剪枝(Weight Clipping)
示例:估计指数分布的期望值
问题:
估计函数 在标准正态分布 下的期望值,即:
直接计算困难,因为 会导致积分在正无穷处发散。
解决方案:
1. 采样数量 的选择
2. 权重的数值稳定性
3. 覆盖目标分布的支持集
4. 权重归一化
1. 直接蒙特卡罗方法
2. 马尔可夫链蒙特卡罗(MCMC)
3. 拟合分布方法
重要性采样是一种有效的数值积分和估计期望的方法,特别适用于直接采样困难或计算复杂的情况下。成功应用的重要关键在于:
如果您对重要性采样的某些细节或应用有更多的兴趣,或者希望了解特定领域的案例,请随时告诉我!
你觉得从客户端选择的角度可以如何改进GREEDYFED算法? 如果你需要的话我可以给你更多关于GREEDYFED算法的原文
好的,让我来从客户端选择的角度,探讨如何改进 GREEDYFED 算法,以进一步提升联邦学习的效率和性能。
GREEDYFED(Greedy Shapley Client Selection)算法的核心思想是:
这种方法旨在提高通信效率,加速模型收敛,特别适用于资源受限和异构性高的环境。
从客户端选择的角度,改进 GREEDYFED 算法可以考虑以下几个方面:
问题:GREEDYFED 可能会重复选择那些历史上贡献度高的客户端,导致数据多样性不足,模型泛化能力受限。
改进方案:
问题:固定的选择策略可能无法适应训练过程中的变化,例如模型收敛速度、数据分布变化等。
改进方案:
问题:仅基于 Shapley 值可能无法全面评估客户端的重要性。
改进方案:
具体实现:
问题:Shapley 值的计算复杂度高,可能影响算法的实时性和可扩展性。
改进方案:
问题:频繁选择同一批客户端可能导致其他客户端长期不参与,影响系统的公平性;同时,需要保护客户端的隐私。
改进方案:
步骤:
优势:
实现思路:
优势:
挑战:引入更多的指标和动态调整机制,可能增加计算和通信开销。
解决方案:
挑战:综合评分中的权重参数需要仔细调优,可能增加复杂度。
解决方案:
挑战:获取客户端的详细指标可能涉及隐私和安全问题。
解决方案:
改进 GREEDYFED 算法的客户端选择策略,可以从以下方面入手:
通过这些改进,可以进一步提升联邦学习的性能和效率,使 GREEDYFED 算法在更多场景下发挥作用。
如果您能提供更多关于 GREEDYFED 算法的原文细节,我可以根据具体内容给出更有针对性的改进建议。如有需要,请随时告诉我!
def greedy_shap_run(
clients,
server,
select_fraction,
T,
random_seed=0,
E=5,
B=10,
learning_rate=0.01,
momentum=0.5,
logging=False,
shap_memory=0.8,
):
text# 深拷贝 clients 和 server,确保不影响原始模型 clients = deepcopy(clients) client_weights = np.array([client.length for client in clients]) # 计算每个客户端数据量的权重 client_weights = client_weights / np.sum(client_weights) server = deepcopy(server) torch.manual_seed(random_seed) np.random.seed(random_seed) num_clients = len(clients) if type(E) == int: # 将训练轮次扩展为客户端列表,以便为每个客户端分配独立的训练轮次 E = [E for _ in range(num_clients)] # 计算每轮选择的客户端数量 num_selected = int(np.ceil(select_fraction * num_clients)) # 初始化一些用于记录训练过程的列表 test_acc = [] train_acc = [] train_loss = [] val_loss = [] val_loss_0 = server.val_loss(server.model, fed_avg_criterion()) test_loss = [] shapley_values_T = [] shapley_values_curr_T = [] ucb_values_T = [] selections_T = [] draws_T = [] sv_rounds = {"gtg": [], "tmc": [], "true": []} num_model_evaluations = {"gtg": [], "tmc": [], "true": []} # 初始化一些追踪每个客户端的变量(例如:选择频率、Shapley值、UCB值等) N_t = [0 for i in range(num_clients)] UCB = [0 for i in range(num_clients)] SV = [0 for i in range(num_clients)] SV_curr = [0 for i in range(num_clients)] # 遍历每个全局通信轮次 T for t in tqdm(range(T)): # select clients to transmit weights to # initially sample every client atleast once # 初始化所有客户端的选择状态 selected_status = [False for i in range(num_clients)] # 前几轮确保每个客户端至少被采样一次 if t < np.floor(num_clients / num_selected): for idx in range(t * num_selected, (t + 1) * num_selected): selected_status[idx] = True # 记录被选择的次数 N_t[idx] += 1 elif t == np.floor(num_clients / num_selected): # 处理最后一轮剩余的客户端,确保每个客户端都至少被选择一次 for idx in range(t * num_selected, num_clients): selected_status[idx] = True N_t[idx] += 1 # 在有剩余选择数量的情况下,从未选择的客户端中随机选择 remaining_selections = num_selected * (t + 1) - num_clients if remaining_selections > 0: unselected_indices = list(range(0, t * num_selected)) selected_indices_subset = np.random.choice( unselected_indices, size=remaining_selections, replace=False ) for idx in selected_indices_subset: selected_status[idx] = True N_t[idx] += 1 else: # do UCB selection # 从第一个通信轮次之后,基于UCB选择客户端 selected_indices = topk(UCB, num_selected) for idx in selected_indices: selected_status[idx] = True N_t[idx] += 1 # uniform random # 存储选定客户端的模型状态(参数) # 存储客户端的样本权重 client_states = [] weights = [] for idx, client in enumerate(clients): if selected_status[idx]: # perform descent at client # 在选定的客户端上执行本地训练 client_state = client.train( server.model, criterion=fed_avg_criterion(), E=E[idx], B=B, learning_rate=learning_rate, momentum=momentum, ) # 客户端数据点的数量,用于聚合时的加权 weight = client.length # number of data points at client client_states.append(client_state) weights.append(weight) # compute shapley values for each client BEFORE updating server model # print('starting MC') # server.model_evaluations = 0 # shapley_values = server.shapley_values_mc( # fed_avg_criterion(), client_states, weights # ) # print(f'SV = {shapley_values}') # print(f'server evaluations = {server.model_evaluations}') # print("starting TMC") # server.model_evaluations = 0 # shapley_values_tmc = server.shapley_values_tmc( # fed_avg_criterion(), deepcopy(client_states), deepcopy(weights) # ) # print(f"server evaluations = {server.model_evaluations}") # # print(f"SV = {shapley_values_tmc}") # num_model_evaluations["tmc"].append(server.model_evaluations) # print("starting GTG") server.model_evaluations = 0 shapley_values_gtg = server.shapley_values_gtg( fed_avg_criterion(), client_states, weights ) # print(f"server evaluations = {server.model_evaluations}") # print(f"SV = {shapley_values_gtg}") num_model_evaluations["gtg"].append(server.model_evaluations) # print("starting True") # server.model_evaluations = 0 # shapley_values_true = server.shapley_values_true( # fed_avg_criterion(), client_states, weights # ) # print(f"server evaluations = {server.model_evaluations}") # # print(f"SV = {shapley_values_true}") # num_model_evaluations["true"].append(server.model_evaluations) sv_rounds["gtg"].append(shapley_values_gtg) # sv_rounds["tmc"].append(shapley_values_tmc) # sv_rounds["true"].append(shapley_values_true) shapley_values = shapley_values_gtg # shapley_values = shapley_values / np.sum(shapley_values) # update server model # 聚合客户端模型的更新并更新服务器模型 server.aggregate(client_states, weights) test_acc_now = server.accuracy() # 测试集上的当前精度 train_acc_now = np.sum( [ client_weights[i] * clients[i].accuracy_(server.model) for i in range(num_clients) ] ) train_loss_now = np.sum( [ client_weights[i] * clients[i].loss(server.model, fed_avg_criterion()) for i in range(num_clients) ] ) val_loss_now = server.val_loss(server.model, fed_avg_criterion()) test_loss_now = server.test_loss(fed_avg_criterion()) # 更新每轮的训练和测试指标 train_acc.append(train_acc_now) test_acc.append(test_acc_now) train_loss.append(train_loss_now) val_loss.append(val_loss_now) test_loss.append(test_loss_now) # 更新UCB值用于下一轮客户端选择 # compute UCB for next round of selections selections = [0 for i in range(num_clients)] counter = 0 if t == 0: val_loss_diff = np.abs(np.diff([val_loss_0] + val_loss)[-1]) else: curr_val_loss_diff = np.diff(val_loss)[-1] if curr_val_loss_diff < 0: # if val loss decreased val_loss_diff = -1 * curr_val_loss_diff # else stick to previous value for i in range(num_clients): if selected_status[i]: SV_curr[i] = shapley_values[counter] if shap_memory in ["mean", "mean-norm"]: prev_wt = (N_t[i] - 1) / N_t[i] else: prev_wt = shap_memory prev_sv = SV[i] curr_wt = 1 - prev_wt # 1 / N_t[i] if shap_memory == "mean-norm": curr_sv = SV_curr[i] / val_loss_diff else: curr_sv = SV_curr[i] SV[i] = prev_wt * prev_sv + curr_wt * curr_sv counter += 1 selections[i] = 1 else: SV_curr[i] = 0 # 更新客户端的UCB值 UCB[i] = SV[i] shapley_values_T.append(deepcopy(SV)) shapley_values_curr_T.append(deepcopy(SV_curr)) ucb_values_T.append(deepcopy(UCB)) selections_T.append(deepcopy(selections)) draws_T.append(deepcopy(N_t)) # 记录每轮的结果(用于可选的日志记录和可视化) log_dict = { "train_accuracy": train_acc_now, "test_accuracy": test_acc_now, "train_loss": train_loss_now, "val_loss": val_loss_now, "test_loss": test_loss_now, } # 理由同上 # for i in range(num_clients): # log_dict[f"shapley_value_{i}"] = SV[i] # log_dict[f"shapley_value_{i}_curr"] = SV_curr[i] # log_dict[f"selection_{i}"] = selections[i] if logging == True: wandb.log(log_dict) # if t % 10 == 0: # sns.heatmap(selections_T).set(title="selections") # plt.show() # sns.heatmap(shapley_values_T).set(title="SV") # plt.show() if logging == True: wandb.finish() # 返回每轮的训练和测试结果,以及客户端选择和Shapley值等信息 return ( test_acc, train_acc, train_loss, val_loss, test_loss, selections_T, shapley_values_T, sv_rounds, num_model_evaluations, ucb_values_T, )
这段是算法的运行代码 请你结合代码分析
好的,让我们结合您提供的代码,对 GREEDYFED 算法进行详细的分析,并探讨如何从客户端选择的角度改进该算法。
GREEDYFED 算法的核心思想是利用 Shapley 值来度量每个客户端对全局模型的贡献度,并在每一轮通信中贪心地选择贡献度最高的客户端参与训练,以加速模型的收敛和提高性能。
以下是对您提供的 greedy_shap_run
函数的详细分析:
clients
: 客户端对象列表,每个客户端包含本地数据和训练方法。server
: 服务器对象,包含全局模型和聚合方法。select_fraction
: 每轮选择的客户端比例。T
: 总的通信轮数。E
、批量大小 B
、学习率、动量、日志记录选项等。pythonclients = deepcopy(clients) client_weights = np.array([client.length for client in clients]) client_weights = client_weights / np.sum(client_weights) server = deepcopy(server) torch.manual_seed(random_seed) np.random.seed(random_seed) num_clients = len(clients)
clients
和 server
,以避免修改原始对象。num_clients
。pythonif type(E) == int: E = [E for _ in range(num_clients)] num_selected = int(np.ceil(select_fraction * num_clients))
E
是整数,则为每个客户端创建一个列表,表示每个客户端的本地训练轮次。num_selected
。pythontest_acc = [] train_acc = [] train_loss = [] val_loss = [] val_loss_0 = server.val_loss(server.model, fed_avg_criterion()) test_loss = [] # 其他用于存储 Shapley 值、UCB 值、选择状态的列表
val_loss_0
是初始的验证集损失,用于后续计算。pythonN_t = [0 for i in range(num_clients)] # 每个客户端被选择的次数 UCB = [0 for i in range(num_clients)] # 每个客户端的 UCB 值 SV = [0 for i in range(num_clients)] # 每个客户端的累计 Shapley 值 SV_curr = [0 for i in range(num_clients)] # 当前轮次的 Shapley 值
pythonfor t in tqdm(range(T)): # 初始化选中状态 selected_status = [False for i in range(num_clients)] # 前几轮确保每个客户端至少被选择一次 if t < np.floor(num_clients / num_selected): # 按顺序选择客户端,确保每个客户端至少被选择一次 for idx in range(t * num_selected, (t + 1) * num_selected): selected_status[idx] = True N_t[idx] += 1 elif t == np.floor(num_clients / num_selected): # 处理剩余的客户端 for idx in range(t * num_selected, num_clients): selected_status[idx] = True N_t[idx] += 1 # 如果还有剩余的选择数量,从已选过的客户端中随机选择 remaining_selections = num_selected * (t + 1) - num_clients if remaining_selections > 0: unselected_indices = list(range(0, t * num_selected)) selected_indices_subset = np.random.choice( unselected_indices, size=remaining_selections, replace=False ) for idx in selected_indices_subset: selected_status[idx] = True N_t[idx] += 1 else: # 之后的轮次,根据 UCB 值选择客户端 selected_indices = topk(UCB, num_selected) for idx in selected_indices: selected_status[idx] = True N_t[idx] += 1
pythonclient_states = [] weights = [] for idx, client in enumerate(clients): if selected_status[idx]: client_state = client.train( server.model, criterion=fed_avg_criterion(), E=E[idx], B=B, learning_rate=learning_rate, momentum=momentum, ) weight = client.length # 客户端数据量 client_states.append(client_state) weights.append(weight)
client_state
。pythonserver.model_evaluations = 0 shapley_values_gtg = server.shapley_values_gtg( fed_avg_criterion(), client_states, weights ) num_model_evaluations["gtg"].append(server.model_evaluations) sv_rounds["gtg"].append(shapley_values_gtg)
shapley_values_gtg
方法计算当前轮次选中客户端的 Shapley 值。pythonserver.aggregate(client_states, weights)
pythontest_acc_now = server.accuracy() train_acc_now = np.sum( [ client_weights[i] * clients[i].accuracy_(server.model) for i in range(num_clients) ] ) # 计算训练损失、验证损失、测试损失等
pythonfor i in range(num_clients): if selected_status[i]: SV_curr[i] = shapley_values[counter] prev_wt = shap_memory if shap_memory not in ["mean", "mean-norm"] else (N_t[i] - 1) / N_t[i] prev_sv = SV[i] curr_wt = 1 - prev_wt curr_sv = SV_curr[i] / val_loss_diff if shap_memory == "mean-norm" else SV_curr[i] SV[i] = prev_wt * prev_sv + curr_wt * curr_sv counter += 1 selections[i] = 1 else: SV_curr[i] = 0 UCB[i] = SV[i]
SV[i]
。SV_curr[i]
。UCB[i]
,用于下一轮的客户端选择。结合代码分析,我们可以从以下几个方面考虑如何改进 GREEDYFED 算法的客户端选择策略:
w_i
,并归一化为概率分布。S_i
:
其中, 控制两者的权衡。S_i
进行排序,选择得分最高的客户端。$\alpha$
、E
、B
等。$\alpha$
,更多依赖 UCB 值。E
或增加 B
,减少本地训练强度。以下是如何在代码中引入上述改进的示例:
在代码中,计算 UCB 值的部分进行修改:
python# 定义重要性权重 w_i,可以根据您选择的指标进行计算 importance_weights = compute_importance_weights(clients) # 归一化重要性权重 importance_weights = importance_weights / np.sum(importance_weights) # 计算综合得分 S_i alpha = 0.7 # 权衡参数,可以根据需要调整 for i in range(num_clients): S_i = alpha * UCB[i] + (1 - alpha) * importance_weights[i] UCB[i] = S_i # 更新 UCB 值为综合得分
然后,在选择客户端时,按照新的 UCB 值进行排序:
pythonselected_indices = topk(UCB, num_selected)
在训练循环中,根据模型的性能指标,动态调整参数:
python# 在每轮结束后,检查验证损失的变化 if t > 0: val_loss_diff = val_loss[-1] - val_loss[-2] if val_loss_diff > threshold: # 如果验证损失上升,可能出现过拟合,调整参数 learning_rate *= decay_rate E = max(1, E - 1) # 减少本地训练轮次
在计算 Shapley 值的部分,可以考虑减少计算频率:
pythonif t % shapley_calc_interval == 0: # 每隔几轮计算一次 Shapley 值 shapley_values_gtg = server.shapley_values_gtg( fed_avg_criterion(), client_states, weights ) # 更新 UCB 值
通过结合代码分析,我们提出了以下改进 GREEDYFED 算法客户端选择策略的建议:
希望这些分析和建议能对您的研究工作有所帮助!
如果您需要进一步的讨论或有其他问题,请随时告诉我。
如何理解代码中的UCB值?
好的,让我详细解释一下代码中 UCB 值 的含义,以及它在 GREEDYFED 算法中的作用。
UCB(Upper Confidence Bound,上置信界) 是一种源自多臂老虎机(Multi-Armed Bandit)问题的策略,用于平衡探索(Exploration)和利用(Exploitation)。在联邦学习的客户端选择中,UCB 策略可以帮助我们在选择客户端时兼顾以下两点:
在提供的 greedy_shap_run
函数中,UCB 值用于指导每一轮通信中客户端的选择:
t
轮开始,根据每个客户端的 UCB 值选择贡献度最高的客户端。代码中 UCB 值的计算与客户端的 Shapley 值 紧密相关。
pythonN_t = [0 for i in range(num_clients)] # 每个客户端被选择的次数 UCB = [0 for i in range(num_clients)] # 每个客户端的 UCB 值 SV = [0 for i in range(num_clients)] # 累计的 Shapley 值 SV_curr = [0 for i in range(num_clients)] # 当前轮次的 Shapley 值
N_t[i]
:客户端 被选择的次数。UCB[i]
:客户端 的 UCB 值,用于指导客户端选择。SV[i]
:客户端 的累计 Shapley 值,反映其历史贡献度。SV_curr[i]
:客户端 在当前轮次的 Shapley 值。在每一轮训练中,对于被选中的客户端,计算其当前的 Shapley 值:
pythonshapley_values_gtg = server.shapley_values_gtg( fed_avg_criterion(), client_states, weights )
shapley_values_gtg
:当前轮次被选中客户端的 Shapley 值列表。pythonfor i in range(num_clients): if selected_status[i]: SV_curr[i] = shapley_values[counter] # 计算历史权重和当前权重 if shap_memory in ["mean", "mean-norm"]: prev_wt = (N_t[i] - 1) / N_t[i] else: prev_wt = shap_memory curr_wt = 1 - prev_wt # 处理特殊情况 if shap_memory == "mean-norm": curr_sv = SV_curr[i] / val_loss_diff else: curr_sv = SV_curr[i] # 更新累计 Shapley 值 SV[i] = prev_wt * SV[i] + curr_wt * curr_sv counter += 1 else: SV_curr[i] = 0 # 更新 UCB 值 UCB[i] = SV[i]
prev_wt
:历史 Shapley 值的权重,通常根据被选择次数 N_t[i]
计算。curr_wt
:当前 Shapley 值的权重,curr_wt = 1 - prev_wt
。SV[i] = prev_wt * SV[i] + curr_wt * curr_sv
。SV[i]
赋值给 UCB[i]
。在后续的通信轮次中,算法根据 UCB 值进行客户端选择:
num_selected
个客户端。希望通过以上解释,您能清晰理解代码中的 UCB 值及其在 GREEDYFED 算法中的作用。如有任何疑问或需要进一步讨论的地方,请随时告诉我!
题目:Greedy Shapley Client Selection for Communication-Efficient Federated Learning
摘要:Abstract—The standard client selection algorithms for Federated Learning (FL) are often unbiased and involve uniform random sampling of clients. This has been proven sub-optimal for fast convergence under practical settings characterized by significant heterogeneity in data distribution, computing, and communication resources across clients. For applications having timing constraints due to limited communication opportunities with the parameter server (PS), the client selection strategy is critical to complete model training within the fixed budget of communication rounds. To address this, we develop a biased client selection strategy, GREEDYFED, that identifies and greedily selects the most contributing clients in each communication round. This method builds on a fast approximation algorithm for the Shapley Value at the PS, making the computation tractable for real-world applications with many clients. Compared to various client selection strategies on several real-world datasets, GREEDYFED demonstrates fast and stable convergence with high accuracy under timing constraints and when imposing a higher degree of heterogeneity in data distribution, systems constraints, and privacy requirements.
一、F EDERATED Learning (FL) [1] is a paradigm for distributed training of neural networks where a resourceful parameter server (PS) aims to train a model using the privately held data of several distributed clients. This is done through iterative interaction between the PS and clients providing the output of their local compute, i.e., local models, instead of raw data; hence, FL is often described as privacy-preserving model training. In such an approach, the communication bottleneck constrains the PS to (1) communicate with a few clients and (2) complete training in the fewest possible communication rounds. Our work focuses on developing a client selection strategy by which the PS can minimize communication overhead and speed up model convergence. The conventional scheme for FL, FEDAVG [1], involves uniform random sampling of a subset of clients in each communication round to perform local computing over their private data. Upon receiving the local models from the selected clients, the PS then aggregates the updates by uniformly averaging model weights (or in proportion to local training data quantity) and initiates the next communication round. FEDAVG proposes to reduce the total number of communication rounds through multiple epochs of client-side training in each round before model averaging. However, averaging model updates from uniformly sampled clients may lead to poor convergence of the PS model in typical FL settings with a high degree of heterogeneity in client data distribution, computational resources, and communication bandwidth. To overcome these challenges with FEDAVG several biased client selection strategies have been proposed for FL, focusing on improving the convergence rate and reducing total communication rounds while ensuring robustness to heterogeneity.
A. Prior Work To minimize the communication overhead, existing works focus on either of the two approaches: (1) model compression through techniques such as quantization, pruning, or distillation [2]–[4], where client updates are compressed to reduce the bandwidth usage in each round of communication with the PS, and (2) reduction of the total number of communication rounds to achieve satisfactory accuracy (or convergence). This is done through modification of the local update scheme, such as in FEDPROX [5] and SCAFFOLD [6], or using biased client selection strategies, such as POWER-OF-CHOICE [7] and ISFEDAVG [8]. Algorithms like FEDPROX introduce a squared penalty term in the client loss to improve personalization in a communication-efficient manner, and SCAFFOLD uses control variates to prevent the client models from drifting away from the PS model. Most modifications to develop an efficient client selection strategy allow performing local updates in the same way as FEDAVG. For instance, POWER-OF-CHOICE selects clients with the highest local loss after querying all models for loss in each round, and IS-FEDAVG modifies client selection and local data subset selection probabilities to minimize gradient noise. Our algorithm GREEDYFED focuses on developing a novel biased client selection strategy adopting game-theoretic data valuation principles to improve communication efficiency in FL. Many prior works have modeled client participation in FL as a cooperative game and looked at the Shapley-Value (SV) [9] as a measure of client contribution to training. SV is an attractive choice due to its unique properties of fairness, symmetry, and additivity. While related works have used SV for client valuation and incentivizing participation [10], [11] for collaborative training, a few works have also used SV for client selection [12]–[14] to improve robustness and speed up training. Two key works using SV for client selection are: [12], in which the authors propose an Upper-Confidence Bound (UCB) client selection algorithm, and [13], which biases the client selection probabilities as softmax of Shapley values. A key limitation of these works is a lack of performance analysis of SV-based client selection in the presence of timing constraints and heterogeneity in data, systems, and privacy requirements, which are essential considerations for the practical deployment of FL algorithms. B. Main Contributions In this paper, we develop a novel greedy SV-based client selection strategy for communication-efficient FL, called GREEDYFED. It requires fewer communication rounds for convergence than state-of-the-art techniques in FL, including SV-based strategies, by involving the most contributing clients in training. Our algorithm builds on [12] and [13] with two essential modifications to enhance training efficiency: (1) Purely greedy client selection (motivated in Section III-B) (2) Integration of a fast Monte Carlo Shapley Value approximation algorithm GTG-SHAPLEY [15] making SV computation tractable for practical applications with several clients. We demonstrate that GREEDYFED alleviates the influence of constrained communication opportunities between clients and the PS, addressing practical deployment challenges due to premature completion of model training and its impact on model accuracy, and is robust towards heterogeneity in data, system constraints, and privacy requirements. Organization: The rest of the paper is organized as follows. In Section II, we describe the client selection problem and set up notation. Section III outlines the details of our GREEDYFED algorithm. In section IV, we describe the experiments, and in Section V we analyze the results. Section VI concludes the paper with directions for future work.
二、II. PROBLEM SETUP Consider a resourceful parameter server (PS) collaboratively training a machine learning model leveraging the local data and compute of N resource-constrained clients. Each client k ∈ [N ] = {1, 2, · · · , N } holds a private dataset Dk with nk samples. Our goal is to design a client selection strategy that selects a subset of M clients, denoted St, in each communication round t to train the PS model w that gives the best prediction f (x, w) while generalizing well on a test set Dtest in the fewest communication rounds. Let Dtrain denote the union of all client datapoints ⋃ k∈[N] Dk with total training samples ntrain = ∑ k∈[N] nk = |Dtrain|. The model w is then obtained such as it minimizes the overall training loss, defined as Training loss: L(w; Dtrain) = 1 ntrain ∑ ( x,y)∈Dtrain ℓ(y, f (x, w)) = ∑ k∈[N ] nk ntrain ∑ ( x,y)∈Dk 1 nk ℓ(y, f (x, w)) = ∑ k∈[N ] qkL(w; Dk), where ℓ(y, f (x, w)) is the loss for a single datapoint. In round t, the server aggregates the updated model parameters w(t+1) k from selected clients k ∈ St and obtains the model w(t+1) = ∑ k∈St λkw(t+1) k , with weights λk proportional to the size of the client’s dataset nk and summing to one. In our method, the server utilizes the SV to quantify selected clients’ average contribution for selection in further rounds. Our method operates in two stages: initial client valuation and greedy client selection (c.f. Section III-A, III-B). In the following, we first discuss data valuation principles to quantify client valuation. Shapley-Value for Client Valuation: We model FL as an N player cooperative game. When a subset St of M < N clients are selected in round t, Shapley-Value [9] measures each player’s average marginal contribution over all subsets S of St. U denotes a utility function on 2[M] → R, which associates a reward/value with every subset of clients. In FL, a natural choice for the utility function is negative of validation loss, which can be evaluated at the server from aggregated client updates {w(t+1) k }k∈St and a validation dataset Dval held at the server. This choice aligns with our objective of minimizing model loss. Thus, for a subset of clients S, utility U (S) is computed on the weighted average of client model updates in S. Then, the Shapley Value of client k is defined as follows: SVk = 1 M ∑ S ∈[M ]\k U (S ∪ k) − U (S) (M −1 |S| ). Due to the combinatorial nature of SV computation, it becomes infeasible for many clients, and several Monte Carlo (MC) sampling approximations have been proposed [15] [16]. [15] shows that Monte Carlo SV approximation in a single round suffers from computational complexity of O(M log M ). GTG-SHAPLEY reduces complexity by truncating MC sampling, achieving upto O(log M ) in the case of IID clients, and outperforms other SV approximation schemes in practice. Client contributions in round t, denoted SV (t) k , are used to update the value of clients k ∈ St. Since practical FL settings only have partial client participation (selecting M out of N clients), we need to compute a cumulative Shapley-Value to compare all clients. [11] proposes to compute the cumulative Shapley Value as SVk = ∑T t=1 SV (t) k with SV (t) k = 0 for rounds where client k is not selected. However, this will unfavourably value clients that were selected less often. Client selection algorithms S-FEDAVG [13] and UCB [12] use the mean of SV (t) k over t where client k was selected, to define cumulative SV, and we borrow this choice for our algorithm. We introduce a greedy selection strategy using cumulative SV incorporating a fast approximation algorithm GTG-SHAPLEY [15] to make SV computation tractable.
三、III. PROPOSED METHOD This section discusses the proposed client selection algorithm for FL, GREEDYFED, which greedily selects clients based on cumulative SV. A. Client Selection Strategy GREEDYFED greedily selects the M clients with the largest cumulative Shapley-Value SV (t) in each communication round t. Our selection scheme has no explicit exploration in the selection process. In contrast, the previous approach UCB [12] proposed an Upper-Confidence Bound client selection criterion with an explicit exploration term added to the cumulative SV. In S-FEDAVG [13], client selection probabilities are assigned as a softmax over a value vector. This value vector is computed as an exponentially weighted average of the cumulative Shapley Values. The softmax sampling in SFEDAVG allows for exploration by sometimes sampling clients with lower past contributions with non-zero probability. Our client selection procedure undergoes two operations: (1) Initialise Shapley Values using round-robin sampling for M clients per round until SVk is initialised for all clients k ∈ [N ], and (2) subsequently perform greedy selection of top M clients based on SVk. We consider two variants for cumulative SV with exponentially weighted and standard averaging. Round-robin sampling allows initial valuation of all clients, and subsequent greedy selection allows for rapid convergence, minimising communication overhead. Next, we discuss the exploration-exploitation tradeoff motivating our design. B. Exploration-Exploitation Tradeoff This design is motivated by two reasons: First, Roundrobin (RR) sampling ensures that every client is selected at least once before comparing client qualities. Exploiting early leads to longer discovery times for unseen high-quality clients, especially without prior knowledge of the client reward distribution. This is experimentally observed in the case of SFEDAVG, which starts exploiting early but is rapidly superseded by UCB and GREEDYFED after RR sampling is over. Second, a client’s valuation in FL decreases as it is selected more often. SV (t) k is bounded by the decrease in validation loss in round t due to the additivity property of SV that gives ∑ k∈St SV (t) k = L(w(t); Dval) − L(w(t+1); Dval). Thus, as the model converges, the validation loss gradient approaches zero, and thus SV (t) k obeys a decreasing trend in t, and the clients selected frequently and recently experience a decrease in average value SVk. This leads GREEDYFED to fall back to other valuable clients after exploiting the top-M clients and not the less explored clients like UCB. This explains the experimentally observed performance improvement of GREEDYFED over UCB, despite identical RR initialisation. The client selection and fast SV computation algorithms are outlined in Alg. 1 and Alg. 2. The ModelAverage(nk, wk) subroutine computes a weighted average of models wk with weights proportional to nk, and ClientUpdate performs training on client data Dk starting from the current server model.
四、IV. EXPERIMENTS We evaluate our algorithm GREEDYFED on several realworld classification tasks against six algorithms: FEDAVG [1], POWER-OF-CHOICE [7], FEDPROX [5], S-FEDAVG [13], UCB [12] and centralized training at the server (as an upper bound), and demonstrate faster and more stable convergence with higher accuracies under timing constraints from the communication network, especially under heterogeneous settings1 We consider public image datasets MNIST [17], FashionMNIST (FMNIST) [18], and CIFAR10 [19]. For MNIST and FMNIST, we implement an MLP classifier, while CIFAR10 uses a CNN. For all datasets, we split the original test set into a validation and test set of 5000 images each at the server. Data Heterogeneity: We distribute training samples across clients according to the Dirichlet(α) distribution, where α controls the degree of label distribution skew across clients. The number of data points at each client nk = qkntrain is distributed according to a power law with qk sampled from P (x) = 3x2, x ∈ (0, 1) and normalised to sum 1, as done in [7]. We present results for different values of α ∈ {10−4, 0.1, 100}. Timing Constraints: We impose a fixed budget on the number of communication rounds T for model training. For smaller T , model training may be stopped well before convergence if satisfactory performance is achieved. In the real world, such timing constraints may arise for several reasons, like limited communication opportunities with the PS, mobility scenarios, constraints on data usage and power consumption of edge devices, or the need for real-time deployment of models. We compare over T ∈ {150, 250, 350} for MNIST and FashionMNIST and T ∈ {100, 150, 200} for CIFAR10. Systems Heterogeneity: FL is characterized by heterogeneity in client-side computing resources. Assuming the presence of another timing constraint for transmitting results to the server within each round, some clients with lower computing or communication resources (stragglers) cannot complete the globally fixed E epochs of training and, thus, transmit partial solutions. We simulate stragglers by selecting x fraction of clients and setting the number of epochs for local training Ek to a uniform random integer in 1 to E, similar to [5]. We present results for x ∈ {0, 0.5, 0.9}. Privacy Heterogeneity: To protect their data, clients can obfuscate transmitted gradients with noise [20]. We simulate varying client privacy requirements with a different noise level for each client. We assign noise level σk = (k − 1) σ N to client k in a random permutation of [N ]. In each communication round, we add IID Gaussian noise from N (0, σ2 k) to the updated model parameters of client k ∈ St before transmitting to the PS. We compare over σ ∈ {0, 0.05, 0.1}. Other Hyperparameters: We report the mean and standard deviation of test accuracies over five seeds after T communication rounds with N clients and M selections per round. We report N, M, T in each table. We fix E = 5, B = 5, learning rate η = 0.01, momentum γ = 0.5 across experiments. Data heterogeneity α = 10−4 unless specified. We vary FEDPROX parameter μ ∈ {0.01, 0.1, 1, 10}. For POWEROF-CHOICE [7], we set an exponential decay rate of 0.9 on the size of the client query set. For GREEDYSHAP, we consider exponential averaging over α ∈ {0, 0.1, 0.5, 0.9} and standard averaging, and report results for the best parameters. For GTG-SHAPLEY [15] ǫ = 10−4, T = 50 × |S| for subset S, with the default convergence criterion.
Algorithm 1 Greedy Shapley-based Client Selection GreedyFed({Dk}, Dval, w(0), T ) Input: N clients with datasets {Dk}N k=1, server with validation dataset Dval, initial model weight w(0), number of communication rounds T , client selection budget M Hyperparameters: Training epochs per round E, Minibatches per training epoch B, learning rate η, momentum γ, exponential averaging parameter α Output: Trained model w(T ) Initialise: Client selections Nk = 0, ∀ k ∈ [N ] 1: for t = 0, 1, 2, · · · , T − 1 do 2: if t < ⌈ N M ⌉ then Round-Robin (random order) 3: St = {t, t + 1, · · · , t + M − 1} 4: else Greedy Selection 5: St = M largest SV clients 6: for client k in St do 7: w(t+1) k = ClientUpdate(Dk, w(t); E, B, η, γ) 8: Nk ← Nk + 1 9: w(t+1) = ModelAverage(nk, w(t+1) k : k ∈ St) 10: {SV (t) k }k∈St = GTG-Shapley(w(t), {w(t+1) k }, Dval) 11: for client k in St do 12: SVk ← (Nk−1)SVk + SV (t) k Nk (Mean) OR SVk ← α · SVk + (1 − α) · SV (t) k (Exponential) 13: return w(T ) Algorithm 2 Server-Side Shapley Value Approximation GTG-Shapley(w(t), {w(t+1) k }k∈St , Dval) Input: Current server model w(t), client updated models {w(t+1) k }, validation dataset at server Dval Hyperparameters : Error threshold ǫ, maximum iterations T Output : Shapley Values {SVk}k∈St Initialise : SVk = 0, ∀ k ∈ St 1: Compute w(t+1) = ModelAverage(nk, w(t+1) k : k ∈ St) 2: v0 = U (w(t)), vM = U (w(t+1)), U (w) := −L(w; Dval) 3: if |vM − v0| < ǫ then 4: return SV (0) k = 0, ∀ k (between round truncation) 5: else 6: for τ = 0, 1, . . . , T − 1 do 7: for client k ∈ St do 8: permute St \ {k}: πτ [0] = k, πτ [1 : M ] 9: vj = v0 10: for j = 1, 2, · · · , M do 11: if |vM − vj | < ǫ then 12: vj+1 = vj (within round truncation) 13: else 14: Client Subset S∗ = πτ [: j] 15: w′ = ModelAverage(nk, w(t+1) k , S∗) 16: vj+1 = U (w′ ) 17: SV (τ ) πτ [j] = τ −1 τ SV (τ −1) πτ [j] + 1 τ (vj+1 − vj ) 18: vj = vj+1 19: break if converged 20: return SV (τ ) k , k ∈ St
五、V. ANALYSIS GREEDYFED consistently achieves higher accuracies and lower standard deviation than all baselines, demonstrating the superiority of our method. All Shapley-Value based methods outperform the other baselines, indicating that this is a promising direction for designing client selection strategies. Data Heterogeneity: In Table I, GREEDYFED consistently outperforms baselines in heterogeneous environments (α = 10−4, 0.1) and exhibits only a slight performance dip when the data distribution is nearly uniform (α = 100). Timing Constraints: In Table II GREEDYFED achieves faster convergence, with performance saturating for small T (also see Fig. 1). For instance, GREEDYSHAP shows only a 4% increase in accuracy on CIFAR10 from T = 150 to 350, while FEDAVG shows an 8% increase. Systems Heterogeneity: In Table III, GREEDYFED shows a smaller drop in performance with a large proportion of stragglers. On FashionMNIST, GREEDYFED only experiences a 1% drop in accuracy with 90% stragglers while FEDAVG and FEDPROX experience a 6% drop. More importantly, the standard deviation of other baselines increases drastically in the presence of stragglers, indicating highly unstable training. Privacy Heterogeneity: In Table IV, GREEDYFED shows excellent robustness to noisy clients. On FashionMNIST, GREEDYFED only experiences an 8% drop in accuracy for σ = 0.1 while FEDAVG incurs a drastic 20% drop. GREEDYFED also shows a much smaller 0.5 point increase in standard deviation compared to baselines with noise.
六、VI. CONCLUSION We highlight the benefit of greedy client selection using cumulative Shapley Value in heterogeneous, noisy environments with strict timing constraints on communication. For future work, one can explore how the quality of client selection depends on the distribution of validation data at the server. While our experiments assume similar validation and training distributions, real-world scenarios may involve clients with unique data classes. Previous studies indicate that SV can be unfair to Mavericks (clients with unique data classes), suggesting the need to address distribution mismatches in SV computation and client selection. Future work may also explore providing clients with Shapley Values as feedback encouraging less relevant clients to drop out to reduce communication overhead, similar to [12].
请结合原文详细分析
好的,我将结合您提供的原文,对论文 "Greedy Shapley Client Selection for Communication-Efficient Federated Learning" 进行详细的分析。
标题:Greedy Shapley Client Selection for Communication-Efficient Federated Learning
摘要:
联邦学习背景:
传统方法的局限性:
现有有偏客户端选择策略的不足:
本文的主要贡献:
数据异构性:
时间约束:
系统异构性:
隐私异构性:
结论:
未来工作:
论文 "Greedy Shapley Client Selection for Communication-Efficient Federated Learning" 提出了 GREEDYFED 算法,利用累积 Shapley 值贪心地选择客户端,显著提高了联邦学习的通信效率和模型性能。通过引入快速近似算法,解决了 Shapley 值计算的复杂度问题。实验结果表明,GREEDYFED 在处理数据、系统和隐私异构性以及时间限制方面具有显著优势。
希望以上分析能够帮助您深入理解这篇论文的内容和贡献!
如果我想改进这个算法(主要是客户端选择这个方向进行改进),你觉得我该如何改进?
好的,如果您想在客户端选择方面改进 GREEDYFED 算法,可以考虑以下几个方向:
思想:在客户端选择中,不仅考虑累积的 Shapley 值,还结合其他重要性指标,为每个客户端分配重要性权重 。
实施方法:
定义重要性指标:选择能反映客户端对全局模型潜在贡献的指标,例如:
计算重要性权重:
综合得分计算:
将累积的 Shapley 值 和重要性权重 相结合,计算每个客户端的综合得分 :
其中, 是权衡参数,控制 Shapley 值和重要性权重的影响。
客户端选择:
优势:
思想:在选择高贡献度客户端的同时,确保数据多样性和客户端参与的公平性,防止模型过拟合,提高泛化能力。
实施方法:
多样性指标:
公平性约束:
分层采样:
优势:
思想:优化 Shapley 值的计算方法,降低计算复杂度,提高实时性。
实施方法:
增量式计算:
近似算法:
降低计算频率:
优势:
思想:在贪心选择的基础上,适当引入探索机制,给未被充分选择的客户端提供机会,避免陷入局部最优。
实施方法:
UCB(Upper Confidence Bound)策略:
在综合得分中加入不确定性项,计算 UCB 值:
其中, 是探索参数, 是客户端 被选择的次数, 是当前轮次。
概率采样:
温度系数调整:
使用 Softmax 函数将综合得分转化为概率分布:
其中, 为温度参数, 越大,分布越均匀,探索性越强。
优势:
思想:根据训练过程中的反馈,动态调整客户端选择策略和参数,以适应模型训练的不同阶段。
实施方法:
监控训练指标:
自适应调整:
强化学习方法:
优势:
思想:在客户端选择中,充分考虑客户端的计算能力、通信带宽、能耗和隐私需求,提升系统的实际可用性。
实施方法:
资源感知:
隐私偏好:
能耗优化:
优势:
改进 GREEDYFED 算法的客户端选择策略,可以从以下方面入手:
建议:
希望这些建议能对您的研究工作有所帮助!
原文B. 探索-利用权衡
Shapley 值的动态变化:
下降趋势:随着模型的收敛,验证损失的梯度趋于零,Shapley 值也呈下降趋势。
影响选择:频繁被选择的客户端 Shapley 值下降,促使算法选择其他有价值的客户端。
设计动机:
初始阶段的探索:通过轮转采样,确保所有客户端都被评估,避免遗漏高质量的客户端。
后续阶段的利用:贪心选择贡献最大的客户端,加速模型收敛。
随着频繁被选择的客户端 Shapley 值下降,促使算法选择其他有价值的客户端。这里不是已经考虑到了给未被充分选择的客户端提供机会这个问题吗
您提出了一个很好的问题,指出了 GREEDYFED 算法中已经存在的一种机制,即随着模型的收敛,频繁被选择的客户端的 Shapley 值会下降,从而促使算法选择其他有价值的客户端。这确实是一种隐式的探索机制,可以给未被充分选择的客户端提供机会。
让我们深入分析这个机制,以及它与我们之前讨论的改进建议之间的关系。
1. Shapley 值的动态变化
2. 促使选择其他客户端
3. 已考虑给未被充分选择的客户端提供机会
尽管 GREEDYFED 算法已经具备了上述机制,但是否仍有改进的空间呢?以下是需要考虑的因素:
1. Shapley 值下降的速度和程度
2. 数据和系统的异构性
3. 收敛速度和探索效率的平衡
基于上述考虑,进一步改进客户端选择策略,可能带来以下益处:
1. 加强探索能力
2. 提升模型泛化能力
3. 提高训练效率
考虑到 GREEDYFED 已经具备了一定的探索-利用平衡机制,我们可以在以下方面进行改进,同时保留原有的优势:
1. 调整 Shapley 值的更新策略
2. 引入不确定性估计
3. 综合多个指标
4. 控制探索程度
方案 1:引入 UCB 策略
计算 UCB 值:
优势:显式地考虑了客户端被选择的次数,未被充分选择的客户端由于 较小,其 UCB 值更大,增加了被选择的机会。
方案 2:综合评分
计算综合得分:
优势:在保持原有 Shapley 值优势的同时,增加了对未被充分选择客户端的关注。
希望以上分析能够解答您的疑问,并为您在改进 GREEDYFED 算法方面提供有价值的参考。如果您有进一步的问题或需要讨论具体的实现细节,请随时告诉我!
C. 对比算法
FEDAVG [1]
POWER-OF-CHOICE [7]
FEDPROX [5]
S-FEDAVG [13]
UCB [12]
中心化训练(作为上限)
在原文这里已经和UCB算法进行过对比 实验结果表明GREEDYFED算法比UCB算法效果更好 那我在GREEDYFED算法基础上增加ucb还有必要吗?
您提出了一个非常重要的问题,值得深入探讨。
在您提供的原文中,GREEDYFED 算法已经与 UCB 算法进行了比较,实验结果显示 GREEDYFED 的效果优于 UCB。这意味着在现有的 GREEDYFED 算法基础上直接添加 UCB 策略,可能并不能带来显著的改进,甚至可能会引入不必要的复杂性。
下面,我将详细分析为什么在 GREEDYFED 算法中添加 UCB 策略可能没有必要,以及在客户端选择方向上,我们还可以考虑哪些其他改进方法。
1. GREEDYFED 的优势
2. UCB 策略的特点
3. 为什么 GREEDYFED 优于 UCB
1. 添加 UCB 可能的影响
2. 实验结果的启示
虽然在 GREEDYFED 中添加 UCB 可能没有必要,但我们仍然可以在客户端选择方向上考虑其他改进,以进一步提升算法性能。以下是一些可能的思路:
思想:除了 Shapley 值,还可以考虑其他反映客户端贡献度或重要性的指标,例如数据质量、数据多样性、计算能力等。
实施方法:
优势:
思想:在选择高贡献度客户端的同时,确保模型能够学习到多样化的数据,提高泛化能力。
实施方法:
优势:
思想:提高 Shapley 值计算的效率和准确性,适应更大规模的客户端环境。
实施方法:
优势:
思想:根据模型的训练状态和性能指标,动态调整客户端选择策略。
实施方法:
优势:
希望这些分析和建议能够帮助您在客户端选择方向上进一步改进 GREEDYFED 算法,取得更好的研究成果!
目前我想在客户端选择时添加强化学习机制来优化算法 你觉得可以从哪些方向进行改进?
好的,您希望在 GREEDYFED 算法的客户端选择中引入强化学习机制来优化算法。我很高兴为您提供一些建议和思路。
强化学习(Reinforcement Learning,RL) 在决策过程中的优势在于:
在联邦学习的客户端选择中,利用 RL 可以:
思想:
实施方法:
优势:
挑战:
思想:
实施方法:
优势:
挑战:
思想:
实施方法:
优势:
挑战:
思想:
实施方法:
优势:
挑战:
思想:
实施方法:
优势:
挑战:
以策略梯度方法为例:
状态表示:
动作表示:
策略网络:
奖励函数:
策略更新:
训练流程:
希望这些建议能帮助您在 GREEDYFED 算法的客户端选择中成功引入强化学习机制,取得更好的研究成果!如果您有任何进一步的问题或需要讨论的细节,请随时告诉我。