реши

Создано: 10 февраля 2026 г.

Отвечено с использованием GPT-5.2 Thinking от Chat01

Вопрос

snimok-ekrana-2026-02-06-v-00-21-00-89744d61-640c-4d05-989b-9d3418f35c1c.pngsnimok-ekrana-2026-02-06-v-00-21-00-89744d61-640c-4d05-989b-9d3418f35c1c.png

реши

Мысль

Solving for coefficient sum with y present

To find the sum of the coefficients of terms containing y in the expansion of (x + y − z)^11, we can use a common trick where all variables are set to 1. For the full polynomial, P(1,1,1) evaluates to 1. To focus on terms with y, we compute the total sum minus the sum from terms without y.

Verifying coefficient sum for terms with y

To find the sum of coefficients of terms containing y, I set y=0 and evaluate the polynomial. P(1,0,1) equals 0, so the sum of terms containing y is 1 (from the total sum of coefficients minus the sum from terms without y). This result seems correct, and I’ll confirm by double-checking via a combinatorial approach.

Thought for 20s

Ответ

Пусть P(x,y,z)=(x+yz)11P(x,y,z)=(x+y-z)^{11}.

  • Сумма всех коэффициентов многочлена равна P(1,1,1)P(1,1,1):
P(1,1,1)=(1+11)11=111=1.P(1,1,1)=(1+1-1)^{11}=1^{11}=1.
  • Сумма коэффициентов при одночленах, не содержащих yy (то есть при y0y^0) равна P(1,0,1)P(1,0,1), потому что при y=0y=0 все члены с yy исчезают:
P(1,0,1)=(1+01)11=011=0.P(1,0,1)=(1+0-1)^{11}=0^{11}=0.

Тогда сумма коэффициентов при одночленах, содержащих yy:

10=1.1-0=1.

Ответ: 1\boxed{1}.

Поделиться этим Q&A