Реши

Создано: 10 февраля 2026 г.

Отвечено с использованием GPT-5.2 Thinking от Chat01

Вопрос

IMG_0335.jpegIMG_0335.jpeg

Реши

Python

python
from PIL import Image, ImageEnhance img = Image.open('/mnt/data/IMG_0335.jpeg') img.size (4032, 3024)

Python

python
import matplotlib.pyplot as plt, numpy as np rot=img.rotate(90, expand=True) rot.size (3024, 4032)

Python

python
# Let's crop region with writing left side? import numpy as np arr=np.array(rot) # show with matplotlib in analysis (not visible to user but helpful) plt.figure(figsize=(6,8)) plt.imshow(rot) plt.axis('off') plt.show()

Python

python
rot2=rot.rotate(180, expand=True) plt.figure(figsize=(10,4)) plt.imshow(rot2) plt.axis('off') plt.show()

Python

python
# crop top band w,h=rot2.size crop=rot2.crop((0,0,w,int(h*0.25))) # top quarter plt.figure(figsize=(12,3)) plt.imshow(crop) plt.axis('off') plt.show()

Python

python
# crop region including expression (approx y=200..1200) crop=rot2.crop((0,150,rot2.size[0],1200)) plt.figure(figsize=(12,4)) plt.imshow(crop) plt.axis('off') plt.show()

Python

python
crop=rot2.crop((0,150,rot2.size[0],1700)) plt.figure(figsize=(14,5)) plt.imshow(crop) plt.axis('off') plt.show()

Python

python
import matplotlib.pyplot as plt from PIL import ImageEnhance, ImageOps # further crop around full fraction frac=rot2.crop((0,300,rot2.size[0],1500)) # enhance contrast gray=ImageOps.grayscale(frac) enh=ImageEnhance.Contrast(gray).enhance(2.5) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(14,4)) plt.imshow(enh, cmap='gray') plt.axis('off') plt.show()

Python

python
right=rot2.crop((1900,420,3024,1050)) gray=ImageOps.grayscale(right) enh=ImageEnhance.Contrast(gray).enhance(3.0) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(8,4)) plt.imshow(enh, cmap='gray') plt.axis('off') plt.show()

Python

python
right=rot2.crop((1600,650,3024,1250)) gray=ImageOps.grayscale(right) enh=ImageEnhance.Contrast(gray).enhance(3.0) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(10,4)) plt.imshow(enh, cmap='gray') plt.axis('off') plt.show()

Python

python
arg=rot2.crop((1220,520,2050,1200)) gray=ImageOps.grayscale(arg) enh=ImageEnhance.Contrast(gray).enhance(3.0) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(10,4)) plt.imshow(enh, cmap='gray') plt.axis('off') plt.show()

Python

python
left=rot2.crop((0,430,900,1050)) gray=ImageOps.grayscale(left) enh=ImageEnhance.Contrast(gray).enhance(3.0) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(10,4)) plt.imshow(enh, cmap='gray') plt.axis('off') plt.show()

Python

python
den=rot2.crop((900,1100,1500,1600)) gray=ImageOps.grayscale(den) enh=ImageEnhance.Contrast(gray).enhance(3.0) enh=ImageEnhance.Sharpness(enh).enhance(2.0) plt.figure(figsize=(8,3)) plt.imshow(enh, cmap='gray') plt.axis('off') plt.show()

Python

python
import sympy as sp sqrt=sp.sqrt x = sqrt(2)/(3*sqrt(2)-1) B = 25**(sp.log(x, sp.Rational(1,5))) * 2**(sp.log(5**sp.Rational(1,3), 5)) A = sp.log(3 + 1/sqrt(2), 3) C = 3**(sp.log(10, 5)) # log base 5 of 10 expr = (A - B) / C sp.nsimplify(expr), sp.N(expr,20) (3**(-1 - log(2)/log(5))*(-2**(log(5**(1/3))/log(5))/25**(log(sqrt(2)/(-1 + 3*sqrt(2)))/log(5)) + log(sqrt(2)/2 + 3)/log(3)), -1.1279525026881477853)

Python

python
B_simpl = (19-6*sqrt(2))/2 * 2**sp.Rational(1,3) sp.simplify(B - B_simpl), sp.N(B_simpl,20) (0, 6.6238576651592592368)

Python

python
sp.N(A,20), sp.N(C,20) (1.1926425205254761750, 4.8151097955721152523)

Мысль

Re-evaluating the expression and terms

Okay, so I got an answer of -1.12795, but that doesn't feel right. I'm starting to think I might have misread the denominator: Perhaps it's not an exponent, but multiplication, like 3×log5(10)3 \times \log_5(10). Yet, the handwriting suggests an exponent. I should stick with 3log5(10)3^{\log_5(10)}. Let’s keep checking.

Simplifying terms and checking expressions

Okay, so B simplifies to x221/5x^{-2} \cdot 2^{1/5}, still irrational. But maybe 25log1/5(2/(321))25^{\log_{1/5} (\sqrt{2}/(3\sqrt{2}-1))} simplifies to x2x^{-2} — that’s rational with a square root. Still, logs and radicals complicate the numerator. Let's keep the denominator 3log5103^{\log_5 10}, for now and check the final simplified expression.

Simplifying expressions and matching terms

It looks like 25 equals (1/5)2(1/5)^{-2}, and then with the simplifications, the expression becomes x2=((321)/2)2=(1962)/2x^{-2} = ((3\sqrt{2}-1)/\sqrt{2})^2 = (19-6\sqrt{2})/2. The numerator involves a logarithm term, and the denominator could potentially simplify, though it seems complex. Let’s proceed with final simplification and check the details.

Thought for 4m 53s

Ответ

С картинки читается выражение

log3 ⁣(3+12)    25log1/5(2321)2log5(53)3log510.\frac{\log_3\!\left(3+\frac1{\sqrt2}\right)\;-\;25^{\log_{1/5}\left(\frac{\sqrt2}{3\sqrt2-1}\right)}\cdot 2^{\log_5(\sqrt[3]{5})}}{3^{\log_5 10}}.

Упростим множители в числителе.

1) 25log1/5x25^{\log_{1/5}x}

Пусть x=2321x=\dfrac{\sqrt2}{3\sqrt2-1}. Заметим, что 25=(15)225=\left(\frac15\right)^{-2}. Тогда

25log1/5x=((15)2)log1/5x=(15)2log1/5x=((15)log1/5x)2=x2.25^{\log_{1/5}x}=\left(\left(\frac15\right)^{-2}\right)^{\log_{1/5}x} =\left(\frac15\right)^{-2\log_{1/5}x} =\Big(\left(\tfrac15\right)^{\log_{1/5}x}\Big)^{-2} =x^{-2}.

Значит,

25log1/5(2321)=(2321)2=(3212)2=(321)22=19622.25^{\log_{1/5}\left(\frac{\sqrt2}{3\sqrt2-1}\right)} =\left(\frac{\sqrt2}{3\sqrt2-1}\right)^{-2} =\left(\frac{3\sqrt2-1}{\sqrt2}\right)^2 =\frac{(3\sqrt2-1)^2}{2} =\frac{19-6\sqrt2}{2}.

2) 2log5(53)2^{\log_5(\sqrt[3]{5})}

log5(53)=log5(51/3)=132log5(53)=21/3=23.\log_5(\sqrt[3]{5})=\log_5(5^{1/3})=\frac13 \quad\Rightarrow\quad 2^{\log_5(\sqrt[3]{5})}=2^{1/3}=\sqrt[3]{2}.

Итог

Выражение равно

log3 ⁣(3+12)    19622233log510\boxed{ \frac{\log_3\!\left(3+\frac1{\sqrt2}\right)\;-\;\frac{19-6\sqrt2}{2}\,\sqrt[3]{2}} {3^{\log_5 10}} }

Численно это примерно:

1.1279525027.\boxed{-1.1279525027}.

Если хочешь — посчитаю точнее или проверю, не иначе ли читается знаменатель (там похоже именно 3log5103^{\log_5 10}).

Вопрос

В числителе 2^log домножается не только на второй но и на первый многочлен

Python

python
from PIL import Image, ImageEnhance img = Image.open('/mnt/data/IMG_0335.jpeg') img.size (4032, 3024)

Python

python
import matplotlib.pyplot as plt, numpy as np, PIL # rotate to make expression horizontal rot = img.rotate(90, expand=True) rot.size (3024, 4032)

Python

python
# crop region containing expression (left side after rotation) import numpy as np arr = np.array(rot) # Let's inspect by cropping a vertical strip where writing is crop = rot.crop((0,0,900,4032)) # left 900 px crop.size (900, 4032)

Python

python
# enhance contrast and convert gray = crop.convert('L') enh = ImageEnhance.Contrast(gray).enhance(2.5) enh = ImageEnhance.Sharpness(enh).enhance(2.0) # further crop around middle where formula is mid = enh.crop((0,500,900,1900)) mid.size (900, 1400)

Python

python
import matplotlib.pyplot as plt plt.figure(figsize=(10,6)) plt.imshow(mid, cmap='gray') plt.axis('off') plt.show()

Python

python
# Let's show whole left strip scaled down to locate formula small = enh.resize((300, int(enh.size[1]*300/enh.size[0]))) plt.figure(figsize=(4,10)) plt.imshow(small, cmap='gray') plt.axis('off') plt.show()

Python

python
bottom = enh.crop((0,2500,900,4032)) small2 = bottom.resize((900, int(bottom.size[1]*900/bottom.size[0]))) plt.figure(figsize=(12,6)) plt.imshow(small2, cmap='gray') plt.axis('off') plt.show()

Python

python
rot2 = img.rotate(-90, expand=True) rot2.size (3024, 4032)

Python

python
strip = rot2.crop((0,0,900,4032)).convert('L') strip_enh = ImageEnhance.Contrast(strip).enhance(2.5) strip_enh = ImageEnhance.Sharpness(strip_enh).enhance(2.0) small = strip_enh.resize((300, int(strip_enh.size[1]*300/strip_enh.size[0]))) plt.figure(figsize=(4,10)) plt.imshow(small, cmap='gray') plt.axis('off') plt.show()

Python

python
top = strip_enh.crop((0,0,1800,1200)) plt.figure(figsize=(12,4)) plt.imshow(top, cmap='gray') plt.axis('off') plt.show()

Python

python
# create downscaled full rotated image for inspection full = rot2.convert('L') full_enh = ImageEnhance.Contrast(full).enhance(2.0) full_enh = ImageEnhance.Sharpness(full_enh).enhance(2.0) small_full = full_enh.resize((800, int(full_enh.size[1]*800/full_enh.size[0]))) plt.figure(figsize=(8,10)) plt.imshow(small_full, cmap='gray') plt.axis('off') plt.show()

Python

python
# crop around numerator to inspect crop2 = full_enh.crop((0,650,3000,1200)) plt.figure(figsize=(14,3)) plt.imshow(crop2, cmap='gray') plt.axis('off') plt.show()

Python

python
den = full_enh.crop((500,1050,1800,1500)) plt.figure(figsize=(10,3)) plt.imshow(den, cmap='gray') plt.axis('off') plt.show()

Python

python
import sympy as sp sqrt2=sp.sqrt(2) x = sqrt2/(3*sqrt2-1) expr_25 = 25**(sp.log(x, sp.Rational(1,5))) # sympy log(a,b) means log base b? Actually sympy log(x, b) is log(x)/log(b). expr_25_simplified = sp.simplify(expr_25) expr_25_simplified 289/(sqrt(2) + 6)**2

Python

python
sp.simplify(expr_25_simplified - (19-6*sqrt2)/2) 0

Python

python
A = sp.log(3+1/sqrt2, 3) # log base 3 B = (19-6*sqrt2)/2 C = 2**sp.Rational(1,3) D = 3**(sp.log(10,5)) expr = (A - B) * C / D sp.N(expr, 20) -1.0635733069386940045

Мысль

A = sp.log(3+1/sqrt2, 3) # log base 3 B = (19-6*sqrt2)/2 C = 2sp.Rational(1,3) D = 3(sp.log(10,5)) expr = (A - B) * C / D sp.N(expr, 20)

-1.0635733069386940045

Thought for 3m 43s

Ответ

Понял: в числителе стоит скобка, и 2log5(53)2^{\log_5(\sqrt[3]{5})} умножает всю разность:

E=(log3 ⁣(3+12)25log1/5(2321))2log5(53)3log510.E=\frac{\Big(\log_3\!\Big(3+\frac1{\sqrt2}\Big)-25^{\log_{1/5}\left(\frac{\sqrt2}{3\sqrt2-1}\right)}\Big)\cdot 2^{\log_5(\sqrt[3]{5})}}{3^{\log_5 10}}.

1) Упростим 25log1/5x25^{\log_{1/5}x}

Пусть x=2321x=\dfrac{\sqrt2}{3\sqrt2-1}. Заметим 25=(15)225=\left(\frac15\right)^{-2}. Тогда

25log1/5x=((15)2)log1/5x=(15)2log1/5x=((15)log1/5x)2=x2.25^{\log_{1/5}x}=\left(\left(\frac15\right)^{-2}\right)^{\log_{1/5}x} =\left(\frac15\right)^{-2\log_{1/5}x} =\Big(\left(\tfrac15\right)^{\log_{1/5}x}\Big)^{-2}=x^{-2}.

Значит

25log1/5(2321)=(2321)2=(3212)2=(321)22=19622.25^{\log_{1/5}\left(\frac{\sqrt2}{3\sqrt2-1}\right)} =\left(\frac{\sqrt2}{3\sqrt2-1}\right)^{-2} =\left(\frac{3\sqrt2-1}{\sqrt2}\right)^2 =\frac{(3\sqrt2-1)^2}{2} =\frac{19-6\sqrt2}{2}.

2) Упростим 2log5(53)2^{\log_5(\sqrt[3]{5})}

log5(53)=log5(51/3)=132log5(53)=21/3=23.\log_5(\sqrt[3]{5})=\log_5(5^{1/3})=\frac13 \quad\Rightarrow\quad 2^{\log_5(\sqrt[3]{5})}=2^{1/3}=\sqrt[3]{2}.

Итог

E=233log510(log3 ⁣(3+12)19622)\boxed{ E=\frac{\sqrt[3]{2}}{3^{\log_5 10}} \left(\log_3\!\left(3+\frac1{\sqrt2}\right)-\frac{19-6\sqrt2}{2}\right) }

Численно:

E1.0635733069.E\approx \boxed{-1.0635733069}.

Поделиться этим Q&A