import sympy as sp
A = sp.Point(2,0)O = sp.Point(0,0)P = sp.Point(-2,0)C = sp.Point( sp.Rational(1,2),-sp.sqrt(15)/2)Q = sp.Point(-sp.Rational(7,4),-sp.sqrt(15)/4)# line PCline_PC = sp.Line(P,C)line_AQ = sp.Line(A,Q)K = line_PC.intersection(line_AQ)[0]K
Point2D(-1,-sqrt(15)/5)
Python
python
QK = Q.distance(K)KA = K.distance(A)QK, KA
(sqrt(15)/5,4*sqrt(15)/5)
Мысль
Computing Geometry Ratio
I need to find the ratio QK:KA along the line AQ, where AQ passes through points A and Q. After calculating the coordinates of point K and the distances, I find the ratio QK:KA=1:4. For part (b), I’ll provide an elegant proof using geometric reasoning, potentially leveraging properties of similar triangles, cyclic quadrilaterals, and the chord-line intersection ratio, along with the sine law. The reasoning will be presented clearly, and I’ll rely on trigonometry for full clarity.
Exploring Chord Ratios
We start with the given values for sine and cosine of angle ∠AOC, namely sinα=415 and cosα=41. As we analyze the geometry of the problem, we observe that line PQ is parallel to BC, and line PC intersects with AQ at point K. To find the ratio of the segments QK to KA, we can apply geometric principles like similar triangles, the intercept theorem, and possibly the intersecting chords theorem, leveraging the properties of chords within circles.
Thought for 3m 54s
Ответ
Дано
Большая окружность ω(O,R);
меньшая ω1(O1,r) касается ω изнутри в A и проходит через O;
R=2r (из OO1=R−r=r);
BC — диаметр ω, M=BC∩ω1(M=A);
P∈AO∩ω(P=A), Q∈AM∩ω(Q=A);
C лежит на дуге AQ без P;
K=PC∩AQ.
a) PQ∥BC
У окружностей, касающихся в A, существует гомотетия
H(A,k=rR=2),
которая переводит ω1 в ω.
O↦P(AO:AP=1:2);
M↦Q(AM:AQ=1:2).
Линия OM при гомотетии, центр которой не лежит на OM, переходит в прямую, параллельнуюOM.
Следовательно PQ∥OM.
Но O,M∈BC⇒OM⊂BC.
Отсюда
PQ∥BC.
b) Найти QK:KA, если
sin∠AOC=415⟹cos∠AOC=41
(так как OA=OC).
1. Удобные координаты
Возьмём O(0,0),R=2,A(2,0).
Тогда
∠AOC=α,sinα=415,cosα=41.
Точка
C(2cosα,2sinα)=(21,−215),
а диаметр BC образует с осью OX угол θ=π−α ⇒ cosθ=−41,sinθ=415.