**Условие задачи:** Доказать, что оператор \( A: ...

Создано: 12 апреля 2025 г.

Отвечено с использованием O1 от Chat01

Вопрос

Условие задачи:

Доказать, что оператор A:L2(0,+)cA: \mathbb{L}_2(0, +\infty) \to c вида

(Ax)(k)=0kx(t)1+tdt,kN,xL2(0,+)(Ax)(k) = \int_0^k \frac{x(t)}{1+t} \, dt, \quad \forall k \in \mathbb{N}, \quad \forall x \in \mathbb{L}_2(0, +\infty)

является ограниченным, и найти его сопряжённый. Исследовать множество A(B1(0))A(B_1(0)) на вполне ограниченность и замкнутость в пространстве cc.

Мысль

Examining operator characteristics

I’m analyzing the operator A, which maps L2(0,∞) to c by integrating. I’m demonstrating its boundedness, exploring its adjoint A* in c*, and examining the unit ball’s image under A for relative compactness and closedness in c.

Establishing adjoint relationships

I’m mapping out the dual of c* as ℓ^1 ⊕ span{e*} and defining the adjoint A* by ensuring <Ax, f>{c,c*} = <x, A* f>{L2} for all x in L2.

Deriving the integral

I'm combining the evaluation approach and ensuring g_k(t) = 1_{[0,k]}(t)/(1+t) fits in L2 by confirming the integral ∫_0^k dt/(1+t)^2 is finite.

Confirming operator constraints

I verified that operator A's L2 norm ∑ f_k (Ax)_k + α lim(Ax)_k is bounded. Then, I determined the operator norm is 1, and the adjoint was established.

Verifying integrability

OK, let me see. Checking that the integrand 1/(1+t) is L2-integrable on (0,∞) and confirms the limit exists as k approaches infinity.

Transforming integrals

I’m rearranging terms by applying Fubini's theorem, ensuring convergence. This method streamlines computing integrals and clarifies the impact of each term on the function.

Ensuring boundedness

I showed g_f(t) = (1/(1+t))(α + S(t)) is in L2 by estimating its norm with the ℓ^1 norm, ensuring it’s within reasonable bounds.

Assessing image characteristics

I'm looking into the image of the unit ball under A, examining relative compactness and closedness. Utilizing Hilbert-Schmidt and Kolmogorov–Riesz-type arguments to understand these properties.

Investigating convergence and compactness

I'm checking if the image of the unit ball under operator A is relatively compact by looking at convergence to a limit and confirming the set stays bounded.

Assessing compactness

I’m mapping out if operator A is compact by analyzing if it sends the unit ball in L2 to a norm-bounded set, ensuring the image remains relatively compact.

Assessing compactness

I’m beginning to see that operator A might compactly transform the unit ball in L2 into a norm-bounded set, ensuring relative compactness by truncating integrals to finite N.

Assessing operator compactness

I'm working through how a large N can approximate operator A by truncating the integral to its initial N coordinates and the limit, ensuring the image stays in a norm-bounded subset.

Confirming compactness

I'm noting that operator A is compact, which means the image of the unit ball is relatively compact. However, it might not be closed, so testing for closedness is necessary.

Confirming image properties

Interestingly enough, the image of operator A is not closed, likely due to A's infinite rank. This means the image of the unit ball isn't closed or complete.

Building upon compactness

I’m mapping out operator A's compactness through boundedness, adjoint properties, and Hilbert-Schmidt inclusion. This approach ensures comprehensive coverage of the topic, leading to a structured conclusion.

Finished reasoning

Ответ

1. Ограниченность оператора

Положим

gk(t)=1[0,k](t)1+t,kN.g_k(t)=\frac{\mathbf 1_{[0,k]}(t)}{1+t}, \qquad k\in\mathbb N .

Тогда для любого xL2(0,)x\in L_2(0,\infty)

(Ax)(k)=0kx(t)1+tdt=0x(t)gk(t)dtx2gk2.(Ax)(k)=\int_0^k\frac{x(t)}{1+t}\,dt=\int_{0}^{\infty}x(t)g_k(t)\,dt \le \|x\|_{2}\,\|g_k\|_{2}.

Вычислим норму gkg_k:

gk22=0kdt(1+t)2=111+k=k1+k  k  1.\|g_k\|_{2}^{2}= \int_{0}^{k}\frac{dt}{(1+t)^{2}} = 1-\frac1{1+k}=\frac{k}{1+k}\;\xrightarrow[k\to\infty]{}\;1 .

Следовательно

supkNgk2=1,Axc=supk(Ax)(k)x2.\sup_{k\in\mathbb N}\|g_k\|_{2}=1,\qquad \|Ax\|_{c}=\sup_{k}|(Ax)(k)|\le\|x\|_{2}.

Отсюда A=1\|A\|=1 и AA — ограниченный (непрерывный) оператор
L2(0,)cL_{2}(0,\infty)\to c.


2. Сопряжённый оператор A ⁣:cL2(0,)A^{*}\colon c^{*}\to L_{2}(0,\infty)

Известно, что любой функционал fcf\in c^{*} представляется единственным образом в виде

f(y)=k=1akyk+αlimkyk,(ak)1,  αC,f(y)=\sum_{k=1}^{\infty}a_k\,y_k+\alpha\lim_{k\to\infty}y_k, \qquad (a_k)\in\ell^{1},\; \alpha\in\mathbb C ,

причём
f=max{a1,α}\|f\|=\max\{\|a\|_{1},|\alpha|\}.

Для xL2(0,)x\in L_{2}(0,\infty)

Ax,f=k=1ak0kx(t)1+tdt+α0x(t)1+tdt.\langle Ax,f\rangle =\sum_{k=1}^{\infty}a_k\int_{0}^{k}\frac{x(t)}{1+t}\,dt +\alpha\int_{0}^{\infty}\frac{x(t)}{1+t}\,dt .

Переставляя сумму и интеграл (допустимо, так как ak<\sum|a_k|<\infty):

Ax,f=0x(t)1+t(α+k>tak)dt=0x(t)gf(t)dt,\langle Ax,f\rangle =\int_{0}^{\infty}\frac{x(t)}{1+t} \Bigl(\alpha+\sum_{k>t}a_k\Bigr)\,dt =\int_{0}^{\infty}x(t)\,g_f(t)\,dt ,

где

  gf(t)=α+k>tak1+t  ,t0.\boxed{\; g_f(t)=\frac{\displaystyle \alpha+\sum_{k>\,t}a_k}{1+t} \;} ,\qquad t\ge0 .

Оценка нормы:

gf222(1+0)2(α2+(k>0ak)2)2max{α2,a12}=2f2,\|g_f\|_{2}^{2} \le\frac{2}{(1+0)^{2}}\Bigl(|\alpha|^{2}+\Bigl(\sum_{k>0}|a_k|\Bigr)^{2}\Bigr) \le 2\max\{|\alpha|^{2},\|a\|_{1}^{2}\}=2\|f\|^{2},

так что gfL2(0,)g_f\in L_{2}(0,\infty) и Af2f\|A^{*}f\|\le\sqrt2\,\|f\|.
Итак,

Af=gf.\boxed{\,A^{*}f = g_f\,}.

3. Образ единичного шара

Обозначим B={xL2:x21}B=\{x\in L_{2}:\|x\|_{2}\le1\}.


3.1. Вполне ограниченность (относительная компактность)

Пусть PN ⁣:ccP_N\colon c\to c — проекция (yk)(y1,,yN,0,0,)(y_k)\mapsto(y_1,\dots,y_N,0,0,\dots).
Для xBx\in B

(IPN)Axc=supk>Nkx(t)1+tdtx21[N,)1+t21[N,)1+t2.\|(I-P_N)Ax\|_{c} =\sup_{k>N}\Bigl|\int_{k}^{\infty}\frac{x(t)}{1+t}\,dt\Bigr| \le\|x\|_{2}\, \Bigl\|\frac{\mathbf 1_{[N,\infty)}}{1+t}\Bigr\|_{2} \le\Bigl\|\frac{\mathbf 1_{[N,\infty)}}{1+t}\Bigr\|_{2}.

Последняя норма стремится к 0 при NN\to\infty, поскольку
11+tL2(0,)\dfrac1{1+t}\in L_{2}(0,\infty).
Следовательно для любого ε>0\varepsilon>0 найдётся NN такое, что
(IPN)Axc<ε\|(I-P_N)Ax\|_{c}<\varepsilon одновременно для всех xBx\in B.

Но PNA(B)P_NA(B) лежит в CN\mathbb C^{N}, то есть в конечномерном пространстве, а значит компактно. Значит A(B)A(B) — равномерный предел компактных множеств, т.е. само является относительно компактным.
Таким образом

A(B) — вполне ограничено в c.\boxed{\,A(B)\text{ — вполне ограничено в }c\,}.

3.2. Замкнуто ли A(B)A(B)?

Оператор AA бесконечного ранга:
для nNn\in\mathbb N положим

xn(t)=n1[n1,n)(t)(1+t).x_n(t)=\sqrt{n}\,\mathbf 1_{[n-1,n)}(t)(1+t).

Тогда xn2=1\|x_n\|_{2}=1, но

(Axn)(k)={0,k<n,nn1n1+t1+tdt=n,kn.(Ax_n)(k)= \begin{cases} 0,&k<n,\\[2mm] \sqrt n\displaystyle\int_{n-1}^{n}\frac{1+t}{1+t}\,dt= \sqrt n,&k\ge n . \end{cases}

Из этого набора можно извлечь бесконечно‑много линейно независимых векторов в cc. Следовательно rankA=\operatorname{rank}A=\infty, а компактный оператор бесконечного ранга не может иметь замкнутый образ единичного шара (если бы был замкнут, он содержал бы шар некоторого радиуса и ранг был бы конечным).

Иначе: пусть {xn}B\{x_n\}\subset B с xn0x_n\rightharpoonup0 (слабое сходимость в L2L_{2}), но AxnAx_n не имеет конвергентной подпоследовательности в норме cc. Это противоречит полной ограниченности, однако можно построить {xn}\{x_n\} так, что AxnycAx_n\to y\in c, но yA(B)y\notin A(B) (например, нормируя частичные суммы x(N)=11[0,N]21[0,N]x^{(N)}=\frac1{\|1_{[0,N]}\|_{2}}1_{[0,N]}).

Следовательно

A(B) не является замкнутым множеством в c.\boxed{\,A(B)\text{ не является замкнутым множеством в }c\,}.

Итог

  • A ⁣:L2(0,)cA\colon L_{2}(0,\infty)\to c — ограниченный оператор с нормой 1.
  • Сопряжённый оператор задаётся формулой (Af)(t)=α+k>tak1+t,f=(ak)+α ⁣ ⁣limc. (A^{*}f)(t)=\frac{\displaystyle\alpha+\sum_{k>\,t}a_k}{1+t}, \qquad f=(a_k)+\alpha\!\cdot\!\lim\in c^{*}.
  • Образ единичного шара A(B1(0))A(B_1(0)) в cc является вполне ограниченным, но не замкнутым.

Поделиться этим Q&A