Расчет времени и скоростей

Создано: 25 января 2025 г.

Отвечено с использованием O1 от Chat01

Вопрос

Для того чтобы добраться до университета студенту нужно прейти шоссе шириной X=18 м, проехать некоторое расстояние по парку и опять перейти шоссе такой же ширины. Он соблюдает правила, и по проезжей части движется пешком со скоростью V, а на самокате едет только по парку со скоростью в K=4.7 раз большей. Оказалось, что средняя путевая скорость (отношение пути к затраченному времени) студента на всём маршруте Vср=4.4 м/c совпала со средней скоростью с момента старта (t=0) до момента времени t1=276 c. Определите:
1. Длину всего пути (S).
2. Длину маршрута в парке (L).
3. Скорость движения пешком (V).
4. Скорость движения на самокате (U).

Мысль

Piecing together the equation

I’m working through the problem by analyzing the points, distances, and speeds involved. This includes calculating the student's average speed, translating lengths and times to variables, and setting up equations to determine speed and distance relationships.

Clarifying average speed

I'm defining the duration T as 276 seconds, during which the average speed consistently was 4.4 m/s.

Analyzing primary data

Mapping out the average route speed and the time span to identify relationships and leverage partial route data for solving unknown variables. Surprising patterns are emerging.

Connections made

Piecing together the total distance involves highway crossings and park distance. Linking walking and riding speeds to average speed reveals relationships guiding the problem towards a solution.

Mapping out total distance

I’m calculating the total distance by multiplying the average speed by the total time of 276 seconds, resulting in 1214.4 meters. This needs to align with other constraints.

Confirming total time

OK, let me see. I’m working through the assumption that the total time T is 276 seconds, which matches the average speed and partial route, leading to a total distance of 1214.4 meters.

Confirming park distance

I’ve determined the park distance to be 1178.4 meters, assuming the total distance is 1214.4 meters and accounting for the 36-meter highway crossings.

Refining calculations

After breaking down the division, I approximated 1178.44.7\frac{1178.4}{4.7} to get around 250.72. This method helps in accurately determining the student's speed.

Confirming precision

I’m refining the division of 1178.4 by 4.7, ensuring precision. The result is approximately 250.72, used to confirm the total distance and consistency with other parameters.

Piecing together walking speed

I’ve refined the walking speed to around 1.039 m/s by comparing the total distance to time and adjusting for precision. This leads me to a more accurate result.

Counting the pace

Converting a walking speed of roughly 1.04 m/s to a scooter speed by multiplying by 4.7 results in about 4.88 m/s, aligning closely with the average speed need.

Taking a closer look

I’m analyzing the average speed and distances to ensure they align with the given conditions. It’s interesting to see how this confirms the problem's parameters.

Wondering about average speed

I'm curious if the final part of the route, traveled at speeds V or 4.7V, could also average 4.4 m/s, which would typically match the average of the entire journey.

Calculating walking speed

I determined the walking speed to be roughly 1.039 m/s by analyzing the total distance and time, and then checked for consistency with the average speed requirements.

Confirming precision

I'm validating the walking and riding speeds to ensure they align with the average speed and total time, maintaining accuracy to three decimal places for precise calculations.

Verifying details

I’m checking the problem constraints to see if an integer approximation or simplified rate might be needed. The values seem accurate, but I’m open to potential adjustments for alignment.

Final checks

I’m aligning units and values to the problem's constraints, considering metric or scientific notation, and confirming calculations for precision and accuracy against average speed requirements.

Thought about пути и скорости студента for 1m 20s

Ответ

Разберём задачу по шагам. Пусть:

  • X=18X = 18 м — ширина шоссе (её нужно перейти дважды, итого 2X=362X = 36 м).
  • LL — длина участка по парку (где студент едет на самокате).
  • VV — скорость пешком (по шоссе).
  • UU — скорость на самокате (по парку).
  • Дано, что U=KVU = K\cdot V с коэффициентом K=4,7K=4{,}7.
  • Средняя путевая скорость (на всём маршруте) Vср=4,4V_{\text{ср}} = 4{,}4 м/с.
  • Кроме того, известно, что эта же средняя скорость получается и при движении от t=0t=0 до t1=276t_1=276 с.

1. Общая идея решения

Если средняя скорость на всём маршруте совпадает со средней от 00 до t1t_1, то это обычно означает, что ко времени t1t_1 студент полностью закончил путь (иначе средняя скорость стала бы другой при добавлении оставшегося участка). Следовательно, общее время всего маршрута можно считать равным

T=276 с.T = 276\text{ с}.

Тогда, зная среднюю путевую скорость Vср=4,4V_{\text{ср}}=4{,}4 м/с и суммарное время T=276T=276 с, легко найти общую длину пути SS:

S  =  Vср  ×  T  =  4,4×276  =  1214,4 м.S \;=\; V_{\text{ср}}\;\times\;T \;=\; 4{,}4 \times 276 \;=\; 1214{,}4\text{ м}.

Обозначим длину парка за LL. Тогда всего студент проходит (пешком) по шоссе 2X=362X=36 м, а по парку (на самокате) — LL м. Значит,

S  =  36+L  =  1214,4L  =  1214,436  =  1178,4 м.S \;=\; 36 + L \;=\; 1214{,}4 \quad\Longrightarrow\quad L \;=\; 1214{,}4 - 36 \;=\; 1178{,}4\text{ м}.

2. Вычисление скоростей

Общее время T=276T=276 с складывается из времени пешего хода по шоссе и времени движения на самокате по парку. Значит,

T  =  36Vпо шоссе  +  LUпо парку.T \;=\; \underbrace{\frac{36}{V}}_{\text{по шоссе}} \;+\; \underbrace{\frac{L}{U}}_{\text{по парку}}.

Но U=4,7VU = 4{,}7\,V. Подставим L=1178,4L = 1178{,}4:

276  =  36V+1178,44,7V.276 \;=\; \frac{36}{V} + \frac{1178{,}4}{\,4{,}7\,V}.

Вынесем 1/V1/V за скобку:

276  =  1V(36+1178,44,7).276 \;=\; \frac{1}{V}\Bigl(36 + \frac{1178{,}4}{4{,}7}\Bigr).

Вычислим дробь:

1178,44,7    250,72.\frac{1178{,}4}{4{,}7} \;\approx\; 250{,}72.

Тогда в скобках

36  +  250,72  =  286,72.36 \;+\; 250{,}72 \;=\; 286{,}72.

Отсюда

276  =  286,72VV  =  286,72276    1,04 м/с.276 \;=\; \frac{286{,}72}{V} \quad\Longrightarrow\quad V \;=\;\frac{286{,}72}{276} \;\approx\;1{,}04\text{ м/с}.

А скорость на самокате равна

U=4,7V    4,7×1,04    4,88 м/с.U = 4{,}7\cdot V \;\approx\;4{,}7 \times 1{,}04 \;\approx\;4{,}88\text{ м/с}.

3. Итоговые ответы

  1. Длина всего пути:
S=1214,4 м.S = 1214{,}4\text{ м}.
  1. Протяжённость маршрута в парке:
L=1178,4 м.L = 1178{,}4\text{ м}.
  1. Скорость пешком:
V    1,04 м/с.V \;\approx\;1{,}04\text{ м/с}.
  1. Скорость на самокате:
U    4,88 м/с.U \;\approx\;4{,}88\text{ м/с}.

Если перевести эти скорости в км/ч, то получится примерно V3,74V \approx 3{,}74 км/ч (пешком) и U17,6U \approx 17{,}6 км/ч (на самокате).

Поделиться этим Q&A