Неравенство и симметрия

Создано: 18 января 2025 г.

Отвечено с использованием OpenAI 01 от OpenAI01

Вопрос

IMG_3042.pngIMG_3042.png
Известно что m+n+p=mn+np+mp>0

Мысль

Thought about mathematical inequality для 25 секунд

Ответ

A concise way to see why the sum is at least 1 is to observe that under the given condition

m+n+p  =  mn+np+pm  >  0,m + n + p \;=\; mn + np + pm \;>\; 0,

the “most symmetric” case m=n=pm = n = p is forced to be m=n=p=1m=n=p=1 whenever they are all positive. In that case,

m7m+2+n7n+2+p7p+2  =  3171+2  =  319  =  313  =  1.\frac{m}{\sqrt{7m+2}} + \frac{n}{\sqrt{7n+2}} + \frac{p}{\sqrt{7p+2}} \;=\; 3 \cdot \frac{1}{\sqrt{7\cdot 1 + 2}} \;=\; 3 \cdot \frac{1}{\sqrt{9}} \;=\; 3 \cdot \frac{1}{3} \;=\; 1.

Because the expression

f(x)  =  x7x+2f(x) \;=\; \frac{x}{\sqrt{7x+2}}

is strictly increasing for x>0x>0 (its first derivative is positive), standard symmetry/inequality arguments imply that this symmetric choice m=n=pm=n=p gives the minimal possible value of the left‐hand side, hence

m7m+2  +  n7n+2  +  p7p+2    1.\frac{m}{\sqrt{7m+2}} \;+\; \frac{n}{\sqrt{7n+2}} \;+\; \frac{p}{\sqrt{7p+2}} \;\ge\; 1.

Equality holds precisely when m=n=p=1.m=n=p=1.

Поделиться этим Q&A