一维势阱能量计算
Создано: 11 января 2025 г.
Создано: 11 января 2025 г.
Recalling the energy formula
I’m thinking about the energy levels in a one-dimensional infinite potential well, specifically the ground state, using .
Calculating energy
I’m noting the constants: electron mass, , and well width. Substituting these into for the ground state energy.
Tackling the denominator
I’m resolving the denominator by multiplying the electron mass, well width squared, and factoring in , reaching .
Calculating energy
I’m working through the numerator and denominator, factoring in . The energy calculation focuses on the correctness of constants and coefficients, resulting in approximately J.
Refining the expression
I’m honing the energy formula, ensuring precise constants and coefficients, and arriving at a simplified expression for in joules.
Crunching the numbers
I’m carefully multiplying and simplifying the expressions for the numerator and denominator, ensuring precision with constants and coefficients, and ultimately calculating the ground state energy in joules.
Converting energy
OK, let me see. I’m mapping the ground state energy from joules to electron volts by dividing by the electron charge, confirming the outcome is around 9.4 eV.
Converting energy
I’m verifying the calculated ground state energy of around 9.4 eV by cross-checking typical formulas for infinite wells and noting consistency with known constants and electron charge.
Thought about 电子在方势阱中的能量 for 28 seconds
问题背景
在一维无限深方势阱(又称无限深方势井)模型中,势阱的势能函数可写为
其中 是势阱的宽度。本题中,给定电子所处的一维无限深方势阱宽度为
对于质量为 的粒子(此处为电子,质量记为 )在一维无限深方势阱中的定态解,能量本征值为
其中
本题只要求最低能级(基态,)时的能量,即
常数与参数:
逐步计算(在 SI 制中得到结果,单位:焦耳)
结果转换为电子伏特()
1 eV = J。
因此
以焦耳计:
以电子伏特计:
因此,电子在宽度为 的一维无限深方势阱中的最低能级能量约为 。