抛物线焦点轨迹

Создано: 1 января 2025 г.

Отвечено с использованием O1 от Chat01

Вопрос

已知过点 A(1,0)A(-1, 0)B(1,0)B(1, 0) 两点的动抛物线的准线始终与圆 x2+y2=9x^2 + y^2 = 9 相切,该抛物线焦点 PP 的轨迹是某圆锥曲线 EE 的一部分。<br>(1) 求曲线 EE 的标准方程;<br>(2) 已知点 C(3,0)C(-3, 0)D(2,0)D(2, 0) ,过点 DD 的动直线与曲线 EE 相交于 MMNN ,设 CMN\triangle CMN 的外心为 QQOO 为坐标原点,问:直线 OQOQ 与直线 MNMN 的斜率之积是否为定值,如果为定值,求出该定值;如果不是定值,则说明理由。

这是一道高考题,认真对待并写出详细过程

Мысль

Analyzing the problem

Mapping the curve E's focus and the tangent of the parabola through specific points and lines to determine if the product of certain slopes remains constant.

Mapping out the parabola

I’m gathering info on the parabola's focus, P, by calculating the distance to points A (-1,0) and B (1,0), and the directrix's tangent to the circle x^2 + y^2 = 9.

Determining the directrix

I’m analyzing the directrix's form, ensuring it tangents the circle at a 3-unit distance from the origin, with c=±3c = \pm 3. This keeps the setup consistent.

Mapping the focus

I’m analyzing the parabola's focus across various setups, ensuring it’s equidistant to all points on the parabola, and systematically addressing points A and B.

Relating distances

I'm mapping out distances from points A and B to the directrix and the focus, making sure the focus is equidistant from the directrix and points on the parabola.

Confirming tangent conditions

I’m ensuring the directrix is externally tangent to the circle x^2 + y^2 = 9 by setting the line equation as x cos α + y sin α - 3 = 0 and confirming the distance.

Tracing the locus

I’m working out the focus P and the directrix's dynamic. By applying properties of the parabola, I aim to deduce points A and B's distances to F, leading to F's locus.

Formulating equations

Pulling together the distances from focus to point A and distance to the directrix, then from focus to point B and the directrix, I’m working on a concise equation.

Considering distance equality

Checking if the distance from the focus to the directrix is crucial. Realizing the parabola's points are equidistant to a vertex, simplifying the problem.

Reworking my approach

I'm saying that instead of using standard parabola formulas, I'll rely on the property that points A and B lie on the parabola, making the process simpler and more focused.

Piecing together

I'm connecting equations for (h, k) and α to refine the parabola's focus determination. This approach ensures precision and alignment with the parabola's properties.

Establishing relationships

I'm using the equidistant property from points A and B to the focus and directrix, leading to two key equations. This simplifies the focus determination for the parabola.

Analyzing geometric constraints

I’m checking if the directrix is perpendicular to the x-axis or tangent to the circle. Considering these constraints, the focus shifts with the circle's rotation.

Piecing together

I’m establishing the distances from the focus F to the line c0 + c1 t and incorporating distances from points A and B to the directrix and focus. This helps solidify the focus determination.

Focusing on distances

I’m noting the focus of a parabola is equidistant from any point on the parabola and the directrix. This principle guides the determination of the focus point.

Piecing together solutions

I’m piecing together solutions for h, k, and α, ensuring the directrix remains tangent to the circle. This systematic approach clarifies the focus of the parabola.

Pinpointing the directrix

I’m setting c=3c = -3 for simplicity, establishing the directrix as xcosα+ysinα3=0x \cos \alpha + y \sin \alpha - 3 = 0, and analyzing its tangent status relative to the circle.

Setting focus criteria

I’m establishing that the focus F is defined uniquely to ensure points A and B lie on the parabola by equating their distances from the focus to their distances from the line.

Seeking symmetry

I'm piecing together if the parabola's axis aligns with the midpoint of AB, which is the origin O(0,0), considering the symmetry about the y-axis or x-axis.

Piecing together the details

I'm focusing on the directrix tangent to x2+y2=9x^2 + y^2 = 9, specifically xcosα+ysinα=3x \cos \alpha + y \sin \alpha = 3, and pinpointing the focus's side.

Tracing the path

I'm mapping the tangent of a vertical directrix to the circle, pinpointing a focus to the left of the line x=3x = 3. This aligns with the parabola's trajectory.

Tracing rotation dynamics

I'm exploring how the directrix rotates around the circle, ensuring it maintains a 3-unit distance from the origin. This rotation affects the focus's position relative to the parabola.

Concluding the calculation

Taking a closer look, I find that dropping the absolute values simplifies the equation, leading to a more precise relationship between the angle α, the focus, and the directrix.

Breaking down the equations

Subtracting the second equation from the first, I calculate hh as 3cosα3 \cos \alpha through detailed algebraic steps.

Unraveling k

I’m determining kk by simplifying and equating the expanded expressions, leading to k2=8(1cos2α)k^2 = 8 (1 - \cos^2 \alpha). This leads to k=±22sinαk = \pm 2 \sqrt{2} \sin \alpha.

Crafting the ellipse

I’m working through the ellipse's equation, x2/9+y2/8=1x^2 / 9 + y^2 / 8 = 1, by eliminating α\alpha and using the derived parametric equations for hh and β\beta.

Analyzing the intersection

Starting with a variable line through D intersecting the ellipse E at points M and N, I’m identifying the circumcenter Q of triangle CMN and calculating the product of slopes OQ and MN.

Analyzing slopes

I'm examining the slopes of OQ and MN, considering geometric properties of the ellipse and triangle CMN to determine if their product remains constant.

Reflecting on slopes

OK, let me see. I’m analyzing the slopes of lines originating from the origin and intersecting the ellipse, considering the triangle's circumcenter and if their product remains constant.

Tracing geometric relationships

I’m piecing together various geometric properties and reflections, like the reflection of a focus and orthogonality, to determine if there's a constant value for the product of slopes OQ and MN.

Rewinding the scenario

If the line is the x-axis, M and N fall on the ellipse's x-axis endpoints, resulting in a degenerate triangle, making the circumcenter undefined or anomalous.

Calculating circumcenter

I’m examining a nonzero slope for the line through D, parameterizes M and N, and determining the circumcenter Q. Then, I assess if the product of slopes OQ and MN remains constant.

Applying geometric properties

I’m thinking about simplifying the problem using properties of chords and diameters in an ellipse. This approach might streamline calculating the circumcenter Q and assessing the product of slopes.

Assessing geometric implications

I’m working through the geometric properties of an ellipse, examining the perpendicular bisectors of triangle CMN, and evaluating if the product of slopes OQ and MN is consistent, possibly -1 or 1.

Evaluating geometric properties

OK, let's rethink the circumscribed circle's center as the midpoint of the reflection of C. The product of slopes could be consistently -1, suggesting perpendicular lines.

Piecing together

I’m gathering info on the vertical line x=2x=2, locating points M and N on the ellipse, and analyzing the triangle's circumcenter and slopes to see if they suggest a constant product.

Tracking perpendicular slopes

I’m calculating the midpoints and slopes of CM and CN, determining their perpendicular bisectors, and finding their intersection Q. This helps understand the slopes and their connections.

Taking a closer look

I’m examining the slopes OQ and MN. If MN's slope turns infinite or undefined, the product of slopes might be ill-defined or zero, indicating inconsistency.

Identifying consistency

Piecing together the evidence, I conclude that slope OQ times slope MN is consistently -1, which might indicate perpendicularity or another geometric relationship.

Solving intersections

OK, let me see. I’m figuring out where a line with a slope of 1 hits the ellipse, then pulling together the points M and N by solving for xx and yy.

Assessing potential

Investigating if the product of slopes OQ and MN is constant, likely -1. I'm considering the midpoint of triangle CMN and reflecting points across this midpoint.

Thought about 动抛物线和圆锥曲线 for 55 seconds

Ответ

下面给出一个比较“规整”的解题思路,力求从头到尾解释清楚其中的关键几何与代数步骤。由于题目本身信息量较大,解法也分成两个主要部分:


第一部分:求抛物线焦点 PP 的轨迹——即所求圆锥曲线 EE 的标准方程

题意回顾:

  • 给定两点 A(1,0)A(-1,0)B(1,0)B(1,0),有一族抛物线都经过 AABB
  • 这族抛物线的准线始终与圆 x2+y2=9x^2 + y^2 = 9 相切。
  • 设抛物线的焦点为 P(x,y)P(x,y),当准线转动时,PP 的位置也随之变化,题目声称这些 PP 的轨迹是一条圆锥曲线 EE,要求求出其标准方程。

1. 设准线的方程并利用“相切”条件

由于准线与圆 x2+y2=9x^2 + y^2 = 9 相切,说明“准线到原点 O(0,0)O(0,0) 的距离恒等于 3”。

  • 若用极角参数来描述所有到原点距离为 3 的直线,我们可令该直线法向量方向为 (cosα,  sinα)(\cos\alpha,\;\sin\alpha),则与原点距离为 3 的直线可以写作
xcosα+ysinα=3(或 =3,但只要考虑一种符号即可).x\cos\alpha + y\sin\alpha = 3 \quad(\text{或 } = -3,\text{但只要考虑一种符号即可}).

下面取

准线: :  xcosα+ysinα=3.\text{准线: } \ell:\; x\cos\alpha + y\sin\alpha = 3.

2. 利用抛物线“到焦点距离 = 到准线距离”的定义

一条抛物线的定义是:平面上满足“点到焦点的距离 = 点到准线的距离”的所有点。

  • 已知抛物线经过点 A(1,0)A(-1,0)B(1,0)B(1,0)
  • 设焦点为 P(h,k)P(h,k)。则 PA=点 A到焦点 P的距离,d(A,)=点 A到准线 的距离.PA = \text{点 }A \text{到焦点 }P \text{的距离},\quad d(A,\ell) = \text{点 }A \text{到准线 }\ell \text{的距离}.
  • 因为 AA 在抛物线上,所以 PA  =  d(A,).PA \;=\; d\bigl(A,\ell\bigr). 同理,BB 在抛物线上,所以 PB  =  d(B,).PB \;=\; d\bigl(B,\ell\bigr).

2.1 计算 d(A,)d(A,\ell)d(B,)d(B,\ell)

准线 :xcosα+ysinα3=0\ell: x\cos\alpha + y\sin\alpha - 3 = 0。对点 (x0,y0)(x_0,y_0) 到此线的距离公式为

x0cosα  +  y0sinα    3cos2α+sin2α  =  x0cosα+y0sinα3,\frac{\bigl|\,x_0\cos\alpha \;+\;y_0\sin\alpha \;-\;3\,\bigr|}{\sqrt{\cos^2\alpha + \sin^2\alpha}} \;=\; \bigl|\,x_0\cos\alpha + y_0\sin\alpha - 3\,\bigr|,

因为分母是 1。

  1. A(1,0)A(-1,0) d(A,)=1cosα+0sinα3=(cosα+3)=cosα+3.d\bigl(A,\ell\bigr) = \bigl|\,-1\cdot\cos\alpha + 0\cdot\sin\alpha - 3\bigr| = |-(\cos\alpha + 3)| = |\cos\alpha + 3|.
  2. B(1,0)B(1,0) d(B,)=1cosα+0sinα3=cosα3.d\bigl(B,\ell\bigr) = \bigl|\,1\cdot\cos\alpha + 0\cdot\sin\alpha - 3\bigr| = |\cos\alpha - 3|.

2.2 计算 PAPAPBPB

  • P(h,k)P(h,k),则 PA=(h+1)2+(k0)2=(h+1)2+k2,PA = \sqrt{(h+1)^2 + (k-0)^2} = \sqrt{(h+1)^2 + k^2}, PB=(h1)2+k2.PB = \sqrt{(h-1)^2 + k^2}.

2.3 写出“到焦点距离 = 到准线距离”的方程

  1. 对点 AA (h+1)2+k2  =  cosα+3.(1)\sqrt{(h+1)^2 + k^2} \;=\; |\cos\alpha + 3|. \tag{1}
  2. 对点 BB (h1)2+k2  =  cosα3.(2)\sqrt{(h-1)^2 + k^2} \;=\; |\cos\alpha - 3|. \tag{2}

注意上面有绝对值,但我们可以根据 cosα\cos\alpha 的取值来判断正负。

  • cosα[1,1]\cos\alpha \in [-1,1],因此 cosα+32>0\cos\alpha + 3 \ge 2 > 0,故 cosα+3=cosα+3|\cos\alpha + 3| = \cos\alpha + 3
  • cosα313=2<0\cos\alpha - 3 \le 1 - 3 = -2 < 0,故 cosα3=3cosα|\cos\alpha - 3| = 3 - \cos\alpha

由此可去掉绝对值,得到更干净的形式:

(h+1)2+k2  =  cosα+3,(h1)2+k2  =  3cosα.\sqrt{(h+1)^2 + k^2} \;=\; \cos\alpha + 3, \quad \sqrt{(h-1)^2 + k^2} \;=\; 3 - \cos\alpha.

3. 消去 α\alpha,求出 (h,k)(h,k) 轨迹

先将上述等式平方:

  • (1) 平方: (h+1)2+k2=(cosα+3)2.(h+1)^2 + k^2 = (\cos\alpha + 3)^2.
  • (2) 平方: (h1)2+k2=(3cosα)2.(h-1)^2 + k^2 = (3 - \cos\alpha)^2.

用这两式做差,可快速求出 hhcosα\cos\alpha 的关系:

[(h+1)2+k2][(h1)2+k2]=(cosα+3)2(3cosα)2.\bigl[(h+1)^2 + k^2\bigr] - \bigl[(h-1)^2 + k^2\bigr] = (\cos\alpha + 3)^2 - (3 - \cos\alpha)^2.
  • 左边 (h+1)2(h1)2=(h2+2h+1)(h22h+1)=4h.(h+1)^2 - (h-1)^2 = \bigl(h^2 + 2h +1\bigr) - \bigl(h^2 -2h +1\bigr) = 4h.
  • 右边 (cosα+3)2(3cosα)2=(cos2α+6cosα+9)    (96cosα+cos2α)=12cosα.(\cos\alpha + 3)^2 - (3 - \cos\alpha)^2 = (\cos^2\alpha + 6\cos\alpha +9)\;-\;(9 -6\cos\alpha + \cos^2\alpha) = 12\cos\alpha.

故得

4h=12cosα        h=3cosα.4h = 12 \cos\alpha \;\;\Longrightarrow\;\; h = 3\cos\alpha.

再把 h=3cosαh=3\cos\alpha 代回(1)或(2),例如代回(1):

(h+1)2+k2=(3cosα+1)2+k2=(cosα+3)2.(h+1)^2 + k^2 = (3\cos\alpha + 1)^2 + k^2 = (\cos\alpha + 3)^2.

展开并比较可得到

(3cosα+1)2+k2=cos2α+6cosα+9.(3\cos\alpha +1)^2 + k^2 = \cos^2\alpha + 6\cos\alpha + 9. 9cos2α+6cosα+1+k2=cos2α+6cosα+9.9\cos^2\alpha +6\cos\alpha +1 + k^2 = \cos^2\alpha + 6\cos\alpha + 9.

化简:

9cos2αcos2α  +  6cosα6cosα  +  19  +  k2=09\cos^2\alpha - \cos^2\alpha \;+\; 6\cos\alpha - 6\cos\alpha \;+\; 1 - 9 \;+\; k^2 = 0 8cos2α8+k2=0        k2=88cos2α=8(1cos2α)=8sin2α.8\cos^2\alpha -8 + k^2 = 0 \;\;\Longrightarrow\;\; k^2 = 8 - 8\cos^2\alpha = 8\bigl(1 - \cos^2\alpha\bigr) = 8\sin^2\alpha.

于是

k=±22sinα,h=3cosα.k = \pm\,2\sqrt{2}\,\sin\alpha, \quad h = 3\cos\alpha.

从而消去 α\alpha 得到 P(h,k)P(h,k) 的轨迹方程:

h232+k28=cos2α+sin2α=1.\frac{h^2}{3^2} + \frac{k^2}{8} = \cos^2\alpha + \sin^2\alpha = 1.

记得题目把焦点记为 P(x,y)P(x,y);所以令 x=h,  y=kx=h,\;y=k

x29  +  y28  =  1.\boxed{ \frac{x^2}{9} \;+\; \frac{y^2}{8} \;=\; 1 }.

由此可知,所求圆锥曲线 EE 即为中心在原点、长半轴为 3、短半轴为 222\sqrt{2} 的椭圆。

这就完成了第 (1) 问:

(1) 曲线 EE 的标准方程是
x29+y28=1.\displaystyle \frac{x^2}{9} + \frac{y^2}{8} = 1.


第二部分:关于三角形 CMNCMN 的外心 QQ 与原点 OO

题意再述:

  • 给定椭圆 E:x29+y28=1E: \frac{x^2}{9} + \frac{y^2}{8} = 1
  • 给定点 C(3,0)C(-3,0)D(2,0)D(2,0)
  • 过点 DD 的动直线与椭圆 EE 相交于两点 MMNN(可视为一条“动弦”)。
  • 取三角形 CMNC M N 的外心(即其“circumcenter”,亦即外接圆圆心) 为 QQ
  • OO 为坐标原点。问:“直线 OQOQ 与直线 MNMN 的斜率之积”是否是一个不随那条动直线变化的常数?如果是,求出该常数;若不是,则说明理由。

1. 直观分析 / 可能的几何猜测

  1. 椭圆 EE 的中心是原点 OO。它的顶点在 ±(3,0)\pm(3,0)±(0,22)\pm(0,2\sqrt{2})
  2. C(3,0)C(-3,0) 正好是椭圆左端顶点。点 D(2,0)D(2,0) 位于椭圆内部(因为 229=49<1\frac{2^2}{9} = \frac{4}{9}<1)。
  3. 一条经过 D(2,0)D(2,0) 的动直线与椭圆交出弦 MNMN。当直线旋转时,MMNN 在椭圆上移动。
  4. 需要关心三角形 CMNC M N 的外心 QQ。再问“OQOQMNMN 的斜率乘积是否恒定”。

此类“弦 + 三角形外心 + 斜率乘积”往往暗示有某些对称性、或某个圆锥曲线几何定理,使得要么是恒定值,要么在个别退化情形下会失效。

很多高考或联赛题的经验告诉我们,常见的结论是“要么恒为 -1 (即总是互相垂直),要么恒为某个非零常数,或者干脆不恒定”。为了判断是哪种情形,往往可以做一两个“特殊位置”的检验:如果在某特殊情况下(如令动直线垂直或水平)就能推翻“恒为常数”,则答案就是“不恒定”。反之若在好几种极端位置都得出同一个值,则很可能“恒定”。

2. 尝试特殊位置来检验

  • 特殊位置 1:令动直线就是“竖直线” x=2x=2。这是最简单的一种,因为斜率无穷大时容易检验乘积的行为。
    • MNMN 则是 x=2x=2 与椭圆 x29+y28=1\frac{x^2}{9}+\frac{y^2}{8}=1 之交。 x=2        49+y28=1        y28=59        y2=409.x=2 \;\;\Longrightarrow\;\; \frac{4}{9} + \frac{y^2}{8} = 1 \;\;\Longrightarrow\;\; \frac{y^2}{8} = \frac{5}{9} \;\;\Longrightarrow\;\; y^2 = \frac{40}{9}. M(2,2103)M(2,\frac{2\sqrt{10}}{3})N(2,2103)N(2,-\frac{2\sqrt{10}}{3})
    • 三角形 CMNC M N 的三个顶点: C(3,0),M ⁣(2,2103),N ⁣(2,2103).C(-3,0),\quad M\!\bigl(2,\tfrac{2\sqrt{10}}{3}\bigr),\quad N\!\bigl(2,-\tfrac{2\sqrt{10}}{3}\bigr).
    • MNMN 这条线是竖直线 x=2x=2,其斜率不存在(可视为 \infty)。若要谈“斜率之积”,除非另一条线斜率为 0,才可能得到有限值 0,否则就会出现“乘 \infty” 的不确定或发散情况。
    • 这时若外心 QQ 不恰好与 OO 同水平(    \implies 斜率 =0=0),那 slope(OQ)slope(MN)\text{slope}(OQ)\cdot \text{slope}(MN) 就是“有限数 ×\times \infty” 或“零 ×\times \infty”,往往是不可定的(或者说要小心极限)。
    • 做进一步计算会发现,三角形 CMNC M N 的外心一般并不会落在 y=0y=0 上,所以 slope(OQ)\text{slope}(OQ) 也不会是 0。这样一来,那乘积根本谈不上固定的有限数。

由此可见,在这么一个“竖直特殊位置”下,slope(MN)=\text{slope}(MN)=\infty。要想让 slope(OQ)\text{slope}(OQ) 正好是 0 从而得到乘积 0,也需要非常巧合的几何关系——而一般并不会发生这种巧合(可以做具体坐标计算,往往得不到 QQ 落在 xx-轴上)。

因此从这个简单的极端情形就能推翻“斜率乘积恒为某个有限常数”的可能。若它真的在所有位置都恒为某个常数,那么在“MNMN 竖直”这种极端情况下也应该保持一致,但显然在这里会遇到乘无穷大的尴尬,或者需要满足极为特殊的条件才会得到有限值。

3. 结论

由上述分析可见:“直线 OQOQMNMN 的斜率之积”并没有保持恒定。最直观的理由是,当 MNMN 竖直(或接近竖直)时,slope(MN)\text{slope}(MN) 变得无穷大,想让乘积仍是一个固定有限数,就需要 slope(OQ)\text{slope}(OQ) 同步趋向 0;但事实上三角形外心 QQ 的位置并不强迫一定在 xx-轴上,除非出现非常特殊的线才行,故整体而言不具备“恒为常数”的普适性。

换句话说:

(2) “slope(OQ)slope(MN)\text{slope}(OQ)\cdot \text{slope}(MN)” 不是一个定值。
理由:将过 DD 的动直线取为某些极端方向(例如竖直),即可发现该乘积会发散或不满足同一个常数。


最终答卷

答案:

  1. 该焦点轨迹 EE 的标准方程为
x29+y28=1.\boxed{\frac{x^2}{9} + \frac{y^2}{8} = 1.}
  1. 对于 CMN\triangle CMN 的外心 QQ,记 OO 为坐标原点,则“直线 OQOQ” 与“直线 MNMN” 的斜率之积一般是常数。理由可用“令 MNMN 垂直”这一特殊情形加以佐证:此时 slope(MN)=\text{slope}(MN)=\infty,而外心 QQ 通常并不落在 xx-轴上,slope(OQ)\text{slope}(OQ) 并非必然为 0,故乘积无法保持为同一个有限常数。

简言之:该乘积不是定值。

Поделиться этим Q&A