Размер детали задан в пределах от 40 до 42 мм. В п...

생성일: 2025년 5월 28일

답변에 사용된 모델 O3 by Chat01

질문

Размер детали задан в пределах от 40 до 42 мм. В партии деталей средний размер оказался 40,8 мм, среднее квадратическое отклонение 0,6 мм. Считая, что размер детали подчинен нормальному закону, определите вероятность того, что из трех деталей одна будет бракованной.

Python

python
p = 0.11455 prob = 3*p*(1-p)**2 prob 0.269429058064125

Python

python
p = 0.11455 prob = 3*p*(1-p)**2 prob 0.269429058064125 0.269429058064125

사고

p = 0.11455 prob = 3p(1-p)**2 prob

0.269429058064125

0.269429058064125

Thought for 19 seconds

답변

Чтобы деталь считалась годной, её размер должен лежать в пределах 4042  мм40\text{–}42\;\text{мм}.

1. Вероятность брака для одной детали

Пусть размер XN(μ=40,8,  σ=0,6)X\sim N(\mu=40{,}8,\;\sigma=0{,}6).

P(брак)=P(X<40)+P(X>42)=P ⁣(Z<4040,80,6)+P ⁣(Z>4240,80,6)=P(Z<1,33)+P(Z>2,00)0,0918+0,0228=0,1146.\begin{aligned} P(\text{брак})&=P(X<40)+P(X>42) \\ &=P\!\Bigl(Z<\tfrac{40-40{,}8}{0{,}6}\Bigr)+P\!\Bigl(Z>\tfrac{42-40{,}8}{0{,}6}\Bigr) \\ &=P(Z<-1{,}33)+P(Z>2{,}00) \\ &\approx 0{,}0918+0{,}0228 = 0{,}1146. \end{aligned}

Обозначим p=0,1146p=0{,}1146.

2. Ровно одна бракованная из трёх

Число бракованных в тройке деталей KBin(n=3,p)K\sim\text{Bin}(n=3,p).

P(K=1)=(31)p(1p)2=30,1146(10,1146)20,269  (около 27%).P(K=1)=\binom{3}{1}p(1-p)^2 =3\cdot0{,}1146\cdot(1-0{,}1146)^2 \approx 0{,}269\;(\text{около }27\%).

Ответ: вероятность того, что из трёх случайно выбранных деталей ровно одна окажется бракованной, составляет примерно 0,27 (27 %).

이 Q&A 공유하기